Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dral1-o | Structured version Visualization version GIF version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Version of dral1 2439 using ax-c11 36901. (Contributed by NM, 24-Nov-1994.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dral1-o.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
dral1-o | ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbae-o 36917 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑥∀𝑥 𝑥 = 𝑦) | |
2 | dral1-o.1 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | biimpd 228 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → 𝜓)) |
4 | 1, 3 | alimdh 1820 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑥𝜓)) |
5 | ax-c11 36901 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 → ∀𝑦𝜓)) | |
6 | 4, 5 | syld 47 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜓)) |
7 | hbae-o 36917 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦∀𝑥 𝑥 = 𝑦) | |
8 | 2 | biimprd 247 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜓 → 𝜑)) |
9 | 7, 8 | alimdh 1820 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜓 → ∀𝑦𝜑)) |
10 | ax-c11 36901 | . . . 4 ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑦𝜑 → ∀𝑥𝜑)) | |
11 | 10 | aecoms-o 36916 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥𝜑)) |
12 | 9, 11 | syld 47 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜓 → ∀𝑥𝜑)) |
13 | 6, 12 | impbid 211 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-11 2154 ax-c5 36897 ax-c4 36898 ax-c7 36899 ax-c10 36900 ax-c11 36901 ax-c9 36904 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: ax12fromc15 36919 axc16g-o 36948 ax12indalem 36959 ax12inda2ALT 36960 |
Copyright terms: Public domain | W3C validator |