Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dral1-o Structured version   Visualization version   GIF version

Theorem dral1-o 38285
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). Version of dral1 2432 using ax-c11 38268. (Contributed by NM, 24-Nov-1994.) (New usage is discouraged.)
Hypothesis
Ref Expression
dral1-o.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
dral1-o (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))

Proof of Theorem dral1-o
StepHypRef Expression
1 hbae-o 38284 . . . 4 (∀𝑥 𝑥 = 𝑦 → ∀𝑥𝑥 𝑥 = 𝑦)
2 dral1-o.1 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
32biimpd 228 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
41, 3alimdh 1811 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑥𝜓))
5 ax-c11 38268 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 → ∀𝑦𝜓))
64, 5syld 47 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜓))
7 hbae-o 38284 . . . 4 (∀𝑥 𝑥 = 𝑦 → ∀𝑦𝑥 𝑥 = 𝑦)
82biimprd 247 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝜓𝜑))
97, 8alimdh 1811 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜓 → ∀𝑦𝜑))
10 ax-c11 38268 . . . 4 (∀𝑦 𝑦 = 𝑥 → (∀𝑦𝜑 → ∀𝑥𝜑))
1110aecoms-o 38283 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥𝜑))
129, 11syld 47 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜓 → ∀𝑥𝜑))
136, 12impbid 211 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-11 2146  ax-c5 38264  ax-c4 38265  ax-c7 38266  ax-c10 38267  ax-c11 38268  ax-c9 38271
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774
This theorem is referenced by:  ax12fromc15  38286  axc16g-o  38315  ax12indalem  38326  ax12inda2ALT  38327
  Copyright terms: Public domain W3C validator