Proof of Theorem ax12inda2ALT
| Step | Hyp | Ref
| Expression |
| 1 | | ax-1 6 |
. . . . . . . 8
⊢
(∀𝑥𝜑 → (𝑥 = 𝑦 → ∀𝑥𝜑)) |
| 2 | 1 | axc4i-o 38900 |
. . . . . . 7
⊢
(∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑)) |
| 3 | 2 | a1i 11 |
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑥 → (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑))) |
| 4 | | biidd 262 |
. . . . . . 7
⊢
(∀𝑧 𝑧 = 𝑥 → (𝜑 ↔ 𝜑)) |
| 5 | 4 | dral1-o 38906 |
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑥 → (∀𝑧𝜑 ↔ ∀𝑥𝜑)) |
| 6 | 5 | imbi2d 340 |
. . . . . . 7
⊢
(∀𝑧 𝑧 = 𝑥 → ((𝑥 = 𝑦 → ∀𝑧𝜑) ↔ (𝑥 = 𝑦 → ∀𝑥𝜑))) |
| 7 | 6 | dral2-o 38932 |
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑥 → (∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑))) |
| 8 | 3, 5, 7 | 3imtr4d 294 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑥 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))) |
| 9 | 8 | aecoms-o 38904 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))) |
| 10 | 9 | a1d 25 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑧 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))) |
| 11 | 10 | a1d 25 |
. 2
⊢
(∀𝑥 𝑥 = 𝑧 → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))) |
| 12 | | simplr 768 |
. . . . 5
⊢ (((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) ∧ 𝑥 = 𝑦) → ¬ ∀𝑥 𝑥 = 𝑦) |
| 13 | | dveeq1-o 38937 |
. . . . . . . 8
⊢ (¬
∀𝑧 𝑧 = 𝑥 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
| 14 | 13 | naecoms-o 38929 |
. . . . . . 7
⊢ (¬
∀𝑥 𝑥 = 𝑧 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
| 15 | 14 | imp 406 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑧 ∧ 𝑥 = 𝑦) → ∀𝑧 𝑥 = 𝑦) |
| 16 | 15 | adantlr 715 |
. . . . 5
⊢ (((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) ∧ 𝑥 = 𝑦) → ∀𝑧 𝑥 = 𝑦) |
| 17 | | hbnae-o 38930 |
. . . . . . 7
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) |
| 18 | | hba1-o 38899 |
. . . . . . 7
⊢
(∀𝑧 𝑥 = 𝑦 → ∀𝑧∀𝑧 𝑥 = 𝑦) |
| 19 | 17, 18 | hban 2299 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) → ∀𝑧(¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦)) |
| 20 | | ax-c5 38885 |
. . . . . . 7
⊢
(∀𝑧 𝑥 = 𝑦 → 𝑥 = 𝑦) |
| 21 | | ax12inda2.1 |
. . . . . . . 8
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
| 22 | 21 | imp 406 |
. . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 23 | 20, 22 | sylan2 593 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 24 | 19, 23 | alimdh 1816 |
. . . . 5
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ∀𝑧 𝑥 = 𝑦) → (∀𝑧𝜑 → ∀𝑧∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 25 | 12, 16, 24 | syl2anc 584 |
. . . 4
⊢ (((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) ∧ 𝑥 = 𝑦) → (∀𝑧𝜑 → ∀𝑧∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 26 | | ax-11 2156 |
. . . . . 6
⊢
(∀𝑧∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥∀𝑧(𝑥 = 𝑦 → 𝜑)) |
| 27 | | hbnae-o 38930 |
. . . . . . 7
⊢ (¬
∀𝑥 𝑥 = 𝑧 → ∀𝑥 ¬ ∀𝑥 𝑥 = 𝑧) |
| 28 | | hbnae-o 38930 |
. . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑧 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑧) |
| 29 | 28, 14 | nf5dh 2146 |
. . . . . . . 8
⊢ (¬
∀𝑥 𝑥 = 𝑧 → Ⅎ𝑧 𝑥 = 𝑦) |
| 30 | | 19.21t 2205 |
. . . . . . . 8
⊢
(Ⅎ𝑧 𝑥 = 𝑦 → (∀𝑧(𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → ∀𝑧𝜑))) |
| 31 | 29, 30 | syl 17 |
. . . . . . 7
⊢ (¬
∀𝑥 𝑥 = 𝑧 → (∀𝑧(𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → ∀𝑧𝜑))) |
| 32 | 27, 31 | albidh 1865 |
. . . . . 6
⊢ (¬
∀𝑥 𝑥 = 𝑧 → (∀𝑥∀𝑧(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))) |
| 33 | 26, 32 | imbitrid 244 |
. . . . 5
⊢ (¬
∀𝑥 𝑥 = 𝑧 → (∀𝑧∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))) |
| 34 | 33 | ad2antrr 726 |
. . . 4
⊢ (((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) ∧ 𝑥 = 𝑦) → (∀𝑧∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))) |
| 35 | 25, 34 | syld 47 |
. . 3
⊢ (((¬
∀𝑥 𝑥 = 𝑧 ∧ ¬ ∀𝑥 𝑥 = 𝑦) ∧ 𝑥 = 𝑦) → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))) |
| 36 | 35 | exp31 419 |
. 2
⊢ (¬
∀𝑥 𝑥 = 𝑧 → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))) |
| 37 | 11, 36 | pm2.61i 182 |
1
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))) |