Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rspsbc2 Structured version   Visualization version   GIF version

Theorem rspsbc2 44566
Description: rspsbc 3830 with two quantifying variables. This proof is rspsbc2VD 44886 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
rspsbc2 (𝐴𝐵 → (𝐶𝐷 → (∀𝑥𝐵𝑦𝐷 𝜑[𝐶 / 𝑦][𝐴 / 𝑥]𝜑)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem rspsbc2
StepHypRef Expression
1 idd 24 . 2 (𝐴𝐵 → (𝐶𝐷𝐶𝐷))
2 rspsbc 3830 . . . 4 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐷 𝜑[𝐴 / 𝑥]𝑦𝐷 𝜑))
32a1d 25 . . 3 (𝐴𝐵 → (𝐶𝐷 → (∀𝑥𝐵𝑦𝐷 𝜑[𝐴 / 𝑥]𝑦𝐷 𝜑)))
4 sbcralg 3825 . . . 4 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦𝐷 𝜑 ↔ ∀𝑦𝐷 [𝐴 / 𝑥]𝜑))
54biimpd 229 . . 3 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦𝐷 𝜑 → ∀𝑦𝐷 [𝐴 / 𝑥]𝜑))
63, 5syl6d 75 . 2 (𝐴𝐵 → (𝐶𝐷 → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑦𝐷 [𝐴 / 𝑥]𝜑)))
7 rspsbc 3830 . 2 (𝐶𝐷 → (∀𝑦𝐷 [𝐴 / 𝑥]𝜑[𝐶 / 𝑦][𝐴 / 𝑥]𝜑))
81, 6, 7syl10 79 1 (𝐴𝐵 → (𝐶𝐷 → (∀𝑥𝐵𝑦𝐷 𝜑[𝐶 / 𝑦][𝐴 / 𝑥]𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wral 3047  [wsbc 3741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-v 3438  df-sbc 3742
This theorem is referenced by:  tratrb  44568  tratrbVD  44892
  Copyright terms: Public domain W3C validator