| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rspsbc2 | Structured version Visualization version GIF version | ||
| Description: rspsbc 3878 with two quantifying variables. This proof is rspsbc2VD 44880 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rspsbc2 | ⊢ (𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐷 → 𝐶 ∈ 𝐷)) | |
| 2 | rspsbc 3878 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐴 / 𝑥]∀𝑦 ∈ 𝐷 𝜑)) | |
| 3 | 2 | a1d 25 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐴 / 𝑥]∀𝑦 ∈ 𝐷 𝜑))) |
| 4 | sbcralg 3873 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐷 𝜑 ↔ ∀𝑦 ∈ 𝐷 [𝐴 / 𝑥]𝜑)) | |
| 5 | 4 | biimpd 229 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐷 [𝐴 / 𝑥]𝜑)) |
| 6 | 3, 5 | syl6d 75 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → ∀𝑦 ∈ 𝐷 [𝐴 / 𝑥]𝜑))) |
| 7 | rspsbc 3878 | . 2 ⊢ (𝐶 ∈ 𝐷 → (∀𝑦 ∈ 𝐷 [𝐴 / 𝑥]𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑)) | |
| 8 | 1, 6, 7 | syl10 79 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷 𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ∀wral 3060 [wsbc 3787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-v 3481 df-sbc 3788 |
| This theorem is referenced by: tratrb 44561 tratrbVD 44886 |
| Copyright terms: Public domain | W3C validator |