![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > altxpeq1 | Structured version Visualization version GIF version |
Description: Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
Ref | Expression |
---|---|
altxpeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ×× 𝐶) = (𝐵 ×× 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq 3322 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑧 = ⟪𝑥, 𝑦⟫ ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝑧 = ⟪𝑥, 𝑦⟫)) | |
2 | 1 | abbidv 2918 | . 2 ⊢ (𝐴 = 𝐵 → {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑧 = ⟪𝑥, 𝑦⟫} = {𝑧 ∣ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝑧 = ⟪𝑥, 𝑦⟫}) |
3 | df-altxp 32579 | . 2 ⊢ (𝐴 ×× 𝐶) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑧 = ⟪𝑥, 𝑦⟫} | |
4 | df-altxp 32579 | . 2 ⊢ (𝐵 ×× 𝐶) = {𝑧 ∣ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝑧 = ⟪𝑥, 𝑦⟫} | |
5 | 2, 3, 4 | 3eqtr4g 2858 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ×× 𝐶) = (𝐵 ×× 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 {cab 2785 ∃wrex 3090 ⟪caltop 32576 ×× caltxp 32577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rex 3095 df-altxp 32579 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |