Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altxpeq1 Structured version   Visualization version   GIF version

Theorem altxpeq1 33436
Description: Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.)
Assertion
Ref Expression
altxpeq1 (𝐴 = 𝐵 → (𝐴 ×× 𝐶) = (𝐵 ×× 𝐶))

Proof of Theorem altxpeq1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 3408 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐴𝑦𝐶 𝑧 = ⟪𝑥, 𝑦⟫ ↔ ∃𝑥𝐵𝑦𝐶 𝑧 = ⟪𝑥, 𝑦⟫))
21abbidv 2887 . 2 (𝐴 = 𝐵 → {𝑧 ∣ ∃𝑥𝐴𝑦𝐶 𝑧 = ⟪𝑥, 𝑦⟫} = {𝑧 ∣ ∃𝑥𝐵𝑦𝐶 𝑧 = ⟪𝑥, 𝑦⟫})
3 df-altxp 33422 . 2 (𝐴 ×× 𝐶) = {𝑧 ∣ ∃𝑥𝐴𝑦𝐶 𝑧 = ⟪𝑥, 𝑦⟫}
4 df-altxp 33422 . 2 (𝐵 ×× 𝐶) = {𝑧 ∣ ∃𝑥𝐵𝑦𝐶 𝑧 = ⟪𝑥, 𝑦⟫}
52, 3, 43eqtr4g 2883 1 (𝐴 = 𝐵 → (𝐴 ×× 𝐶) = (𝐵 ×× 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  {cab 2801  wrex 3141  caltop 33419   ×× caltxp 33420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1781  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-rex 3146  df-altxp 33422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator