| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > altxpeq1 | Structured version Visualization version GIF version | ||
| Description: Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
| Ref | Expression |
|---|---|
| altxpeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ×× 𝐶) = (𝐵 ×× 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 3305 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑧 = ⟪𝑥, 𝑦⟫ ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝑧 = ⟪𝑥, 𝑦⟫)) | |
| 2 | 1 | abbidv 2802 | . 2 ⊢ (𝐴 = 𝐵 → {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑧 = ⟪𝑥, 𝑦⟫} = {𝑧 ∣ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝑧 = ⟪𝑥, 𝑦⟫}) |
| 3 | df-altxp 35982 | . 2 ⊢ (𝐴 ×× 𝐶) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑧 = ⟪𝑥, 𝑦⟫} | |
| 4 | df-altxp 35982 | . 2 ⊢ (𝐵 ×× 𝐶) = {𝑧 ∣ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝑧 = ⟪𝑥, 𝑦⟫} | |
| 5 | 2, 3, 4 | 3eqtr4g 2796 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ×× 𝐶) = (𝐵 ×× 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {cab 2714 ∃wrex 3061 ⟪caltop 35979 ×× caltxp 35980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-rex 3062 df-altxp 35982 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |