Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > altxpeq1 | Structured version Visualization version GIF version |
Description: Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
Ref | Expression |
---|---|
altxpeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ×× 𝐶) = (𝐵 ×× 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq 3341 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑧 = ⟪𝑥, 𝑦⟫ ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝑧 = ⟪𝑥, 𝑦⟫)) | |
2 | 1 | abbidv 2808 | . 2 ⊢ (𝐴 = 𝐵 → {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑧 = ⟪𝑥, 𝑦⟫} = {𝑧 ∣ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝑧 = ⟪𝑥, 𝑦⟫}) |
3 | df-altxp 34240 | . 2 ⊢ (𝐴 ×× 𝐶) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑧 = ⟪𝑥, 𝑦⟫} | |
4 | df-altxp 34240 | . 2 ⊢ (𝐵 ×× 𝐶) = {𝑧 ∣ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝑧 = ⟪𝑥, 𝑦⟫} | |
5 | 2, 3, 4 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ×× 𝐶) = (𝐵 ×× 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 {cab 2716 ∃wrex 3066 ⟪caltop 34237 ×× caltxp 34238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-ral 3070 df-rex 3071 df-altxp 34240 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |