Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > altxpeq2 | Structured version Visualization version GIF version |
Description: Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
Ref | Expression |
---|---|
altxpeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ×× 𝐴) = (𝐶 ×× 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq 3334 | . . . 4 ⊢ (𝐴 = 𝐵 → (∃𝑦 ∈ 𝐴 𝑧 = ⟪𝑥, 𝑦⟫ ↔ ∃𝑦 ∈ 𝐵 𝑧 = ⟪𝑥, 𝑦⟫)) | |
2 | 1 | rexbidv 3225 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐴 𝑧 = ⟪𝑥, 𝑦⟫ ↔ ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐵 𝑧 = ⟪𝑥, 𝑦⟫)) |
3 | 2 | abbidv 2808 | . 2 ⊢ (𝐴 = 𝐵 → {𝑧 ∣ ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐴 𝑧 = ⟪𝑥, 𝑦⟫} = {𝑧 ∣ ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐵 𝑧 = ⟪𝑥, 𝑦⟫}) |
4 | df-altxp 34188 | . 2 ⊢ (𝐶 ×× 𝐴) = {𝑧 ∣ ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐴 𝑧 = ⟪𝑥, 𝑦⟫} | |
5 | df-altxp 34188 | . 2 ⊢ (𝐶 ×× 𝐵) = {𝑧 ∣ ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐵 𝑧 = ⟪𝑥, 𝑦⟫} | |
6 | 3, 4, 5 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ×× 𝐴) = (𝐶 ×× 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {cab 2715 ∃wrex 3064 ⟪caltop 34185 ×× caltxp 34186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-ral 3068 df-rex 3069 df-altxp 34188 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |