Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abbidv | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 10-Aug-1993.) Avoid ax-12 2173, based on an idea of Steven Nguyen. (Revised by Wolf Lammen, 6-May-2023.) |
Ref | Expression |
---|---|
abbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
abbidv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1931 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | abbi1 2807 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑥 ∣ 𝜒}) |
Copyright terms: Public domain | W3C validator |