Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > altopthd | Structured version Visualization version GIF version |
Description: Alternate ordered pair theorem with different sethood requirements. See altopth 34250 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
Ref | Expression |
---|---|
altopthd.1 | ⊢ 𝐶 ∈ V |
altopthd.2 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
altopthd | ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2746 | . 2 ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ⟪𝐶, 𝐷⟫ = ⟪𝐴, 𝐵⟫) | |
2 | altopthd.1 | . . 3 ⊢ 𝐶 ∈ V | |
3 | altopthd.2 | . . 3 ⊢ 𝐷 ∈ V | |
4 | 2, 3 | altopth 34250 | . 2 ⊢ (⟪𝐶, 𝐷⟫ = ⟪𝐴, 𝐵⟫ ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵)) |
5 | eqcom 2746 | . . 3 ⊢ (𝐶 = 𝐴 ↔ 𝐴 = 𝐶) | |
6 | eqcom 2746 | . . 3 ⊢ (𝐷 = 𝐵 ↔ 𝐵 = 𝐷) | |
7 | 5, 6 | anbi12i 626 | . 2 ⊢ ((𝐶 = 𝐴 ∧ 𝐷 = 𝐵) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
8 | 1, 4, 7 | 3bitri 296 | 1 ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ⟪caltop 34237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-sn 4567 df-pr 4569 df-altop 34239 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |