![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > altopthd | Structured version Visualization version GIF version |
Description: Alternate ordered pair theorem with different sethood requirements. See altopth 35925 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
Ref | Expression |
---|---|
altopthd.1 | ⊢ 𝐶 ∈ V |
altopthd.2 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
altopthd | ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2747 | . 2 ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ⟪𝐶, 𝐷⟫ = ⟪𝐴, 𝐵⟫) | |
2 | altopthd.1 | . . 3 ⊢ 𝐶 ∈ V | |
3 | altopthd.2 | . . 3 ⊢ 𝐷 ∈ V | |
4 | 2, 3 | altopth 35925 | . 2 ⊢ (⟪𝐶, 𝐷⟫ = ⟪𝐴, 𝐵⟫ ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵)) |
5 | eqcom 2747 | . . 3 ⊢ (𝐶 = 𝐴 ↔ 𝐴 = 𝐶) | |
6 | eqcom 2747 | . . 3 ⊢ (𝐷 = 𝐵 ↔ 𝐵 = 𝐷) | |
7 | 5, 6 | anbi12i 627 | . 2 ⊢ ((𝐶 = 𝐴 ∧ 𝐷 = 𝐵) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
8 | 1, 4, 7 | 3bitri 297 | 1 ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⟪caltop 35912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-altop 35914 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |