![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > altopthd | Structured version Visualization version GIF version |
Description: Alternate ordered pair theorem with different sethood requirements. See altopth 34879 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
Ref | Expression |
---|---|
altopthd.1 | ⊢ 𝐶 ∈ V |
altopthd.2 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
altopthd | ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2740 | . 2 ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ⟪𝐶, 𝐷⟫ = ⟪𝐴, 𝐵⟫) | |
2 | altopthd.1 | . . 3 ⊢ 𝐶 ∈ V | |
3 | altopthd.2 | . . 3 ⊢ 𝐷 ∈ V | |
4 | 2, 3 | altopth 34879 | . 2 ⊢ (⟪𝐶, 𝐷⟫ = ⟪𝐴, 𝐵⟫ ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵)) |
5 | eqcom 2740 | . . 3 ⊢ (𝐶 = 𝐴 ↔ 𝐴 = 𝐶) | |
6 | eqcom 2740 | . . 3 ⊢ (𝐷 = 𝐵 ↔ 𝐵 = 𝐷) | |
7 | 5, 6 | anbi12i 628 | . 2 ⊢ ((𝐶 = 𝐴 ∧ 𝐷 = 𝐵) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
8 | 1, 4, 7 | 3bitri 297 | 1 ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ⟪caltop 34866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-sn 4628 df-pr 4630 df-altop 34868 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |