Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopthd Structured version   Visualization version   GIF version

Theorem altopthd 34253
Description: Alternate ordered pair theorem with different sethood requirements. See altopth 34250 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.)
Hypotheses
Ref Expression
altopthd.1 𝐶 ∈ V
altopthd.2 𝐷 ∈ V
Assertion
Ref Expression
altopthd (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem altopthd
StepHypRef Expression
1 eqcom 2746 . 2 (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ⟪𝐶, 𝐷⟫ = ⟪𝐴, 𝐵⟫)
2 altopthd.1 . . 3 𝐶 ∈ V
3 altopthd.2 . . 3 𝐷 ∈ V
42, 3altopth 34250 . 2 (⟪𝐶, 𝐷⟫ = ⟪𝐴, 𝐵⟫ ↔ (𝐶 = 𝐴𝐷 = 𝐵))
5 eqcom 2746 . . 3 (𝐶 = 𝐴𝐴 = 𝐶)
6 eqcom 2746 . . 3 (𝐷 = 𝐵𝐵 = 𝐷)
75, 6anbi12i 626 . 2 ((𝐶 = 𝐴𝐷 = 𝐵) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
81, 4, 73bitri 296 1 (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  caltop 34237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-sn 4567  df-pr 4569  df-altop 34239
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator