Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopthd Structured version   Visualization version   GIF version

Theorem altopthd 35953
Description: Alternate ordered pair theorem with different sethood requirements. See altopth 35950 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.)
Hypotheses
Ref Expression
altopthd.1 𝐶 ∈ V
altopthd.2 𝐷 ∈ V
Assertion
Ref Expression
altopthd (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem altopthd
StepHypRef Expression
1 eqcom 2741 . 2 (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ⟪𝐶, 𝐷⟫ = ⟪𝐴, 𝐵⟫)
2 altopthd.1 . . 3 𝐶 ∈ V
3 altopthd.2 . . 3 𝐷 ∈ V
42, 3altopth 35950 . 2 (⟪𝐶, 𝐷⟫ = ⟪𝐴, 𝐵⟫ ↔ (𝐶 = 𝐴𝐷 = 𝐵))
5 eqcom 2741 . . 3 (𝐶 = 𝐴𝐴 = 𝐶)
6 eqcom 2741 . . 3 (𝐷 = 𝐵𝐵 = 𝐷)
75, 6anbi12i 628 . 2 ((𝐶 = 𝐴𝐷 = 𝐵) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
81, 4, 73bitri 297 1 (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1536  wcel 2105  Vcvv 3477  caltop 35937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-sn 4631  df-pr 4633  df-altop 35939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator