Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elaltxp Structured version   Visualization version   GIF version

Theorem elaltxp 35910
Description: Membership in alternate Cartesian products. (Contributed by Scott Fenton, 23-Mar-2012.)
Assertion
Ref Expression
elaltxp (𝑋 ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑋 = ⟪𝑥, 𝑦⟫)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦

Proof of Theorem elaltxp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3484 . 2 (𝑋 ∈ (𝐴 ×× 𝐵) → 𝑋 ∈ V)
2 altopex 35895 . . . . 5 𝑥, 𝑦⟫ ∈ V
3 eleq1 2821 . . . . 5 (𝑋 = ⟪𝑥, 𝑦⟫ → (𝑋 ∈ V ↔ ⟪𝑥, 𝑦⟫ ∈ V))
42, 3mpbiri 258 . . . 4 (𝑋 = ⟪𝑥, 𝑦⟫ → 𝑋 ∈ V)
54a1i 11 . . 3 ((𝑥𝐴𝑦𝐵) → (𝑋 = ⟪𝑥, 𝑦⟫ → 𝑋 ∈ V))
65rexlimivv 3188 . 2 (∃𝑥𝐴𝑦𝐵 𝑋 = ⟪𝑥, 𝑦⟫ → 𝑋 ∈ V)
7 eqeq1 2738 . . . 4 (𝑧 = 𝑋 → (𝑧 = ⟪𝑥, 𝑦⟫ ↔ 𝑋 = ⟪𝑥, 𝑦⟫))
872rexbidv 3209 . . 3 (𝑧 = 𝑋 → (∃𝑥𝐴𝑦𝐵 𝑧 = ⟪𝑥, 𝑦⟫ ↔ ∃𝑥𝐴𝑦𝐵 𝑋 = ⟪𝑥, 𝑦⟫))
9 df-altxp 35894 . . 3 (𝐴 ×× 𝐵) = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = ⟪𝑥, 𝑦⟫}
108, 9elab2g 3663 . 2 (𝑋 ∈ V → (𝑋 ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑋 = ⟪𝑥, 𝑦⟫))
111, 6, 10pm5.21nii 378 1 (𝑋 ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑋 = ⟪𝑥, 𝑦⟫)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3059  Vcvv 3463  caltop 35891   ×× caltxp 35892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rex 3060  df-v 3465  df-dif 3934  df-un 3936  df-nul 4314  df-sn 4607  df-pr 4609  df-altop 35893  df-altxp 35894
This theorem is referenced by:  altopelaltxp  35911  altxpsspw  35912
  Copyright terms: Public domain W3C validator