Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elaltxp Structured version   Visualization version   GIF version

Theorem elaltxp 35604
Description: Membership in alternate Cartesian products. (Contributed by Scott Fenton, 23-Mar-2012.)
Assertion
Ref Expression
elaltxp (𝑋 ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑋 = ⟪𝑥, 𝑦⟫)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦

Proof of Theorem elaltxp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝑋 ∈ (𝐴 ×× 𝐵) → 𝑋 ∈ V)
2 altopex 35589 . . . . 5 𝑥, 𝑦⟫ ∈ V
3 eleq1 2817 . . . . 5 (𝑋 = ⟪𝑥, 𝑦⟫ → (𝑋 ∈ V ↔ ⟪𝑥, 𝑦⟫ ∈ V))
42, 3mpbiri 257 . . . 4 (𝑋 = ⟪𝑥, 𝑦⟫ → 𝑋 ∈ V)
54a1i 11 . . 3 ((𝑥𝐴𝑦𝐵) → (𝑋 = ⟪𝑥, 𝑦⟫ → 𝑋 ∈ V))
65rexlimivv 3197 . 2 (∃𝑥𝐴𝑦𝐵 𝑋 = ⟪𝑥, 𝑦⟫ → 𝑋 ∈ V)
7 eqeq1 2732 . . . 4 (𝑧 = 𝑋 → (𝑧 = ⟪𝑥, 𝑦⟫ ↔ 𝑋 = ⟪𝑥, 𝑦⟫))
872rexbidv 3217 . . 3 (𝑧 = 𝑋 → (∃𝑥𝐴𝑦𝐵 𝑧 = ⟪𝑥, 𝑦⟫ ↔ ∃𝑥𝐴𝑦𝐵 𝑋 = ⟪𝑥, 𝑦⟫))
9 df-altxp 35588 . . 3 (𝐴 ×× 𝐵) = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = ⟪𝑥, 𝑦⟫}
108, 9elab2g 3671 . 2 (𝑋 ∈ V → (𝑋 ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑋 = ⟪𝑥, 𝑦⟫))
111, 6, 10pm5.21nii 377 1 (𝑋 ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑋 = ⟪𝑥, 𝑦⟫)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wrex 3067  Vcvv 3473  caltop 35585   ×× caltxp 35586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-rex 3068  df-v 3475  df-dif 3952  df-un 3954  df-nul 4327  df-sn 4633  df-pr 4635  df-altop 35587  df-altxp 35588
This theorem is referenced by:  altopelaltxp  35605  altxpsspw  35606
  Copyright terms: Public domain W3C validator