| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elaltxp | Structured version Visualization version GIF version | ||
| Description: Membership in alternate Cartesian products. (Contributed by Scott Fenton, 23-Mar-2012.) |
| Ref | Expression |
|---|---|
| elaltxp | ⊢ (𝑋 ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑋 = ⟪𝑥, 𝑦⟫) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝑋 ∈ (𝐴 ×× 𝐵) → 𝑋 ∈ V) | |
| 2 | altopex 35994 | . . . . 5 ⊢ ⟪𝑥, 𝑦⟫ ∈ V | |
| 3 | eleq1 2819 | . . . . 5 ⊢ (𝑋 = ⟪𝑥, 𝑦⟫ → (𝑋 ∈ V ↔ ⟪𝑥, 𝑦⟫ ∈ V)) | |
| 4 | 2, 3 | mpbiri 258 | . . . 4 ⊢ (𝑋 = ⟪𝑥, 𝑦⟫ → 𝑋 ∈ V) |
| 5 | 4 | a1i 11 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑋 = ⟪𝑥, 𝑦⟫ → 𝑋 ∈ V)) |
| 6 | 5 | rexlimivv 3174 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑋 = ⟪𝑥, 𝑦⟫ → 𝑋 ∈ V) |
| 7 | eqeq1 2735 | . . . 4 ⊢ (𝑧 = 𝑋 → (𝑧 = ⟪𝑥, 𝑦⟫ ↔ 𝑋 = ⟪𝑥, 𝑦⟫)) | |
| 8 | 7 | 2rexbidv 3197 | . . 3 ⊢ (𝑧 = 𝑋 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟪𝑥, 𝑦⟫ ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑋 = ⟪𝑥, 𝑦⟫)) |
| 9 | df-altxp 35993 | . . 3 ⊢ (𝐴 ×× 𝐵) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟪𝑥, 𝑦⟫} | |
| 10 | 8, 9 | elab2g 3631 | . 2 ⊢ (𝑋 ∈ V → (𝑋 ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑋 = ⟪𝑥, 𝑦⟫)) |
| 11 | 1, 6, 10 | pm5.21nii 378 | 1 ⊢ (𝑋 ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑋 = ⟪𝑥, 𝑦⟫) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ⟪caltop 35990 ×× caltxp 35991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-v 3438 df-dif 3900 df-un 3902 df-nul 4279 df-sn 4572 df-pr 4574 df-altop 35992 df-altxp 35993 |
| This theorem is referenced by: altopelaltxp 36010 altxpsspw 36011 |
| Copyright terms: Public domain | W3C validator |