Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > an13 | Structured version Visualization version GIF version |
Description: A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012.) (Proof shortened by Wolf Lammen, 31-Dec-2012.) |
Ref | Expression |
---|---|
an13 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an21 640 | . 2 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | ancom 460 | . 2 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜒) ↔ (𝜒 ∧ (𝜓 ∧ 𝜑))) | |
3 | 1, 2 | bitr3i 276 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: an31 644 elsnxp 6183 dchrelbas3 26291 dfiota3 34152 bj-dfmpoa 35216 islpln5 37476 islvol5 37520 dibelval3 39088 opeliun2xp 45556 |
Copyright terms: Public domain | W3C validator |