| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | euind.2 | . . . . . 6
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| 2 | 1 | cbvexvw 2035 | . . . . 5
⊢
(∃𝑥𝜑 ↔ ∃𝑦𝜓) | 
| 3 |  | euind.1 | . . . . . . . . 9
⊢ 𝐵 ∈ V | 
| 4 | 3 | isseti 3497 | . . . . . . . 8
⊢
∃𝑧 𝑧 = 𝐵 | 
| 5 | 4 | biantrur 530 | . . . . . . 7
⊢ (𝜓 ↔ (∃𝑧 𝑧 = 𝐵 ∧ 𝜓)) | 
| 6 | 5 | exbii 1847 | . . . . . 6
⊢
(∃𝑦𝜓 ↔ ∃𝑦(∃𝑧 𝑧 = 𝐵 ∧ 𝜓)) | 
| 7 |  | 19.41v 1948 | . . . . . . 7
⊢
(∃𝑧(𝑧 = 𝐵 ∧ 𝜓) ↔ (∃𝑧 𝑧 = 𝐵 ∧ 𝜓)) | 
| 8 | 7 | exbii 1847 | . . . . . 6
⊢
(∃𝑦∃𝑧(𝑧 = 𝐵 ∧ 𝜓) ↔ ∃𝑦(∃𝑧 𝑧 = 𝐵 ∧ 𝜓)) | 
| 9 |  | excom 2161 | . . . . . 6
⊢
(∃𝑦∃𝑧(𝑧 = 𝐵 ∧ 𝜓) ↔ ∃𝑧∃𝑦(𝑧 = 𝐵 ∧ 𝜓)) | 
| 10 | 6, 8, 9 | 3bitr2i 299 | . . . . 5
⊢
(∃𝑦𝜓 ↔ ∃𝑧∃𝑦(𝑧 = 𝐵 ∧ 𝜓)) | 
| 11 | 2, 10 | bitri 275 | . . . 4
⊢
(∃𝑥𝜑 ↔ ∃𝑧∃𝑦(𝑧 = 𝐵 ∧ 𝜓)) | 
| 12 |  | eqeq2 2748 | . . . . . . . . 9
⊢ (𝐴 = 𝐵 → (𝑧 = 𝐴 ↔ 𝑧 = 𝐵)) | 
| 13 | 12 | imim2i 16 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) → ((𝜑 ∧ 𝜓) → (𝑧 = 𝐴 ↔ 𝑧 = 𝐵))) | 
| 14 |  | biimpr 220 | . . . . . . . . . 10
⊢ ((𝑧 = 𝐴 ↔ 𝑧 = 𝐵) → (𝑧 = 𝐵 → 𝑧 = 𝐴)) | 
| 15 | 14 | imim2i 16 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝜓) → (𝑧 = 𝐴 ↔ 𝑧 = 𝐵)) → ((𝜑 ∧ 𝜓) → (𝑧 = 𝐵 → 𝑧 = 𝐴))) | 
| 16 |  | an31 648 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑧 = 𝐵) ↔ ((𝑧 = 𝐵 ∧ 𝜓) ∧ 𝜑)) | 
| 17 | 16 | imbi1i 349 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑧 = 𝐵) → 𝑧 = 𝐴) ↔ (((𝑧 = 𝐵 ∧ 𝜓) ∧ 𝜑) → 𝑧 = 𝐴)) | 
| 18 |  | impexp 450 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑧 = 𝐵) → 𝑧 = 𝐴) ↔ ((𝜑 ∧ 𝜓) → (𝑧 = 𝐵 → 𝑧 = 𝐴))) | 
| 19 |  | impexp 450 | . . . . . . . . . 10
⊢ ((((𝑧 = 𝐵 ∧ 𝜓) ∧ 𝜑) → 𝑧 = 𝐴) ↔ ((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) | 
| 20 | 17, 18, 19 | 3bitr3i 301 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝜓) → (𝑧 = 𝐵 → 𝑧 = 𝐴)) ↔ ((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) | 
| 21 | 15, 20 | sylib 218 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) → (𝑧 = 𝐴 ↔ 𝑧 = 𝐵)) → ((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) | 
| 22 | 13, 21 | syl 17 | . . . . . . 7
⊢ (((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) → ((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) | 
| 23 | 22 | 2alimi 1811 | . . . . . 6
⊢
(∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) → ∀𝑥∀𝑦((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) | 
| 24 |  | 19.23v 1941 | . . . . . . . 8
⊢
(∀𝑦((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴)) ↔ (∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) | 
| 25 | 24 | albii 1818 | . . . . . . 7
⊢
(∀𝑥∀𝑦((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴)) ↔ ∀𝑥(∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) | 
| 26 |  | 19.21v 1938 | . . . . . . 7
⊢
(∀𝑥(∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴)) ↔ (∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → ∀𝑥(𝜑 → 𝑧 = 𝐴))) | 
| 27 | 25, 26 | bitri 275 | . . . . . 6
⊢
(∀𝑥∀𝑦((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴)) ↔ (∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → ∀𝑥(𝜑 → 𝑧 = 𝐴))) | 
| 28 | 23, 27 | sylib 218 | . . . . 5
⊢
(∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) → (∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → ∀𝑥(𝜑 → 𝑧 = 𝐴))) | 
| 29 | 28 | eximdv 1916 | . . . 4
⊢
(∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) → (∃𝑧∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → ∃𝑧∀𝑥(𝜑 → 𝑧 = 𝐴))) | 
| 30 | 11, 29 | biimtrid 242 | . . 3
⊢
(∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) → (∃𝑥𝜑 → ∃𝑧∀𝑥(𝜑 → 𝑧 = 𝐴))) | 
| 31 | 30 | imp 406 | . 2
⊢
((∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) ∧ ∃𝑥𝜑) → ∃𝑧∀𝑥(𝜑 → 𝑧 = 𝐴)) | 
| 32 |  | pm4.24 563 | . . . . . . . . 9
⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | 
| 33 | 32 | biimpi 216 | . . . . . . . 8
⊢ (𝜑 → (𝜑 ∧ 𝜑)) | 
| 34 |  | anim12 808 | . . . . . . . 8
⊢ (((𝜑 → 𝑧 = 𝐴) ∧ (𝜑 → 𝑤 = 𝐴)) → ((𝜑 ∧ 𝜑) → (𝑧 = 𝐴 ∧ 𝑤 = 𝐴))) | 
| 35 |  | eqtr3 2762 | . . . . . . . 8
⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐴) → 𝑧 = 𝑤) | 
| 36 | 33, 34, 35 | syl56 36 | . . . . . . 7
⊢ (((𝜑 → 𝑧 = 𝐴) ∧ (𝜑 → 𝑤 = 𝐴)) → (𝜑 → 𝑧 = 𝑤)) | 
| 37 | 36 | alanimi 1815 | . . . . . 6
⊢
((∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑥(𝜑 → 𝑤 = 𝐴)) → ∀𝑥(𝜑 → 𝑧 = 𝑤)) | 
| 38 |  | 19.23v 1941 | . . . . . 6
⊢
(∀𝑥(𝜑 → 𝑧 = 𝑤) ↔ (∃𝑥𝜑 → 𝑧 = 𝑤)) | 
| 39 | 37, 38 | sylib 218 | . . . . 5
⊢
((∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑥(𝜑 → 𝑤 = 𝐴)) → (∃𝑥𝜑 → 𝑧 = 𝑤)) | 
| 40 | 39 | com12 32 | . . . 4
⊢
(∃𝑥𝜑 → ((∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑥(𝜑 → 𝑤 = 𝐴)) → 𝑧 = 𝑤)) | 
| 41 | 40 | alrimivv 1927 | . . 3
⊢
(∃𝑥𝜑 → ∀𝑧∀𝑤((∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑥(𝜑 → 𝑤 = 𝐴)) → 𝑧 = 𝑤)) | 
| 42 | 41 | adantl 481 | . 2
⊢
((∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) ∧ ∃𝑥𝜑) → ∀𝑧∀𝑤((∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑥(𝜑 → 𝑤 = 𝐴)) → 𝑧 = 𝑤)) | 
| 43 |  | eqeq1 2740 | . . . . 5
⊢ (𝑧 = 𝑤 → (𝑧 = 𝐴 ↔ 𝑤 = 𝐴)) | 
| 44 | 43 | imbi2d 340 | . . . 4
⊢ (𝑧 = 𝑤 → ((𝜑 → 𝑧 = 𝐴) ↔ (𝜑 → 𝑤 = 𝐴))) | 
| 45 | 44 | albidv 1919 | . . 3
⊢ (𝑧 = 𝑤 → (∀𝑥(𝜑 → 𝑧 = 𝐴) ↔ ∀𝑥(𝜑 → 𝑤 = 𝐴))) | 
| 46 | 45 | eu4 2614 | . 2
⊢
(∃!𝑧∀𝑥(𝜑 → 𝑧 = 𝐴) ↔ (∃𝑧∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑧∀𝑤((∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑥(𝜑 → 𝑤 = 𝐴)) → 𝑧 = 𝑤))) | 
| 47 | 31, 42, 46 | sylanbrc 583 | 1
⊢
((∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) ∧ ∃𝑥𝜑) → ∃!𝑧∀𝑥(𝜑 → 𝑧 = 𝐴)) |