Step | Hyp | Ref
| Expression |
1 | | euind.2 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
2 | 1 | cbvexvw 2045 |
. . . . 5
⊢
(∃𝑥𝜑 ↔ ∃𝑦𝜓) |
3 | | euind.1 |
. . . . . . . . 9
⊢ 𝐵 ∈ V |
4 | 3 | isseti 3423 |
. . . . . . . 8
⊢
∃𝑧 𝑧 = 𝐵 |
5 | 4 | biantrur 534 |
. . . . . . 7
⊢ (𝜓 ↔ (∃𝑧 𝑧 = 𝐵 ∧ 𝜓)) |
6 | 5 | exbii 1855 |
. . . . . 6
⊢
(∃𝑦𝜓 ↔ ∃𝑦(∃𝑧 𝑧 = 𝐵 ∧ 𝜓)) |
7 | | 19.41v 1958 |
. . . . . . 7
⊢
(∃𝑧(𝑧 = 𝐵 ∧ 𝜓) ↔ (∃𝑧 𝑧 = 𝐵 ∧ 𝜓)) |
8 | 7 | exbii 1855 |
. . . . . 6
⊢
(∃𝑦∃𝑧(𝑧 = 𝐵 ∧ 𝜓) ↔ ∃𝑦(∃𝑧 𝑧 = 𝐵 ∧ 𝜓)) |
9 | | excom 2166 |
. . . . . 6
⊢
(∃𝑦∃𝑧(𝑧 = 𝐵 ∧ 𝜓) ↔ ∃𝑧∃𝑦(𝑧 = 𝐵 ∧ 𝜓)) |
10 | 6, 8, 9 | 3bitr2i 302 |
. . . . 5
⊢
(∃𝑦𝜓 ↔ ∃𝑧∃𝑦(𝑧 = 𝐵 ∧ 𝜓)) |
11 | 2, 10 | bitri 278 |
. . . 4
⊢
(∃𝑥𝜑 ↔ ∃𝑧∃𝑦(𝑧 = 𝐵 ∧ 𝜓)) |
12 | | eqeq2 2749 |
. . . . . . . . 9
⊢ (𝐴 = 𝐵 → (𝑧 = 𝐴 ↔ 𝑧 = 𝐵)) |
13 | 12 | imim2i 16 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) → ((𝜑 ∧ 𝜓) → (𝑧 = 𝐴 ↔ 𝑧 = 𝐵))) |
14 | | biimpr 223 |
. . . . . . . . . 10
⊢ ((𝑧 = 𝐴 ↔ 𝑧 = 𝐵) → (𝑧 = 𝐵 → 𝑧 = 𝐴)) |
15 | 14 | imim2i 16 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝜓) → (𝑧 = 𝐴 ↔ 𝑧 = 𝐵)) → ((𝜑 ∧ 𝜓) → (𝑧 = 𝐵 → 𝑧 = 𝐴))) |
16 | | an31 648 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑧 = 𝐵) ↔ ((𝑧 = 𝐵 ∧ 𝜓) ∧ 𝜑)) |
17 | 16 | imbi1i 353 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑧 = 𝐵) → 𝑧 = 𝐴) ↔ (((𝑧 = 𝐵 ∧ 𝜓) ∧ 𝜑) → 𝑧 = 𝐴)) |
18 | | impexp 454 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑧 = 𝐵) → 𝑧 = 𝐴) ↔ ((𝜑 ∧ 𝜓) → (𝑧 = 𝐵 → 𝑧 = 𝐴))) |
19 | | impexp 454 |
. . . . . . . . . 10
⊢ ((((𝑧 = 𝐵 ∧ 𝜓) ∧ 𝜑) → 𝑧 = 𝐴) ↔ ((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) |
20 | 17, 18, 19 | 3bitr3i 304 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝜓) → (𝑧 = 𝐵 → 𝑧 = 𝐴)) ↔ ((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) |
21 | 15, 20 | sylib 221 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) → (𝑧 = 𝐴 ↔ 𝑧 = 𝐵)) → ((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) |
22 | 13, 21 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) → ((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) |
23 | 22 | 2alimi 1820 |
. . . . . 6
⊢
(∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) → ∀𝑥∀𝑦((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) |
24 | | 19.23v 1950 |
. . . . . . . 8
⊢
(∀𝑦((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴)) ↔ (∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) |
25 | 24 | albii 1827 |
. . . . . . 7
⊢
(∀𝑥∀𝑦((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴)) ↔ ∀𝑥(∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴))) |
26 | | 19.21v 1947 |
. . . . . . 7
⊢
(∀𝑥(∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴)) ↔ (∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → ∀𝑥(𝜑 → 𝑧 = 𝐴))) |
27 | 25, 26 | bitri 278 |
. . . . . 6
⊢
(∀𝑥∀𝑦((𝑧 = 𝐵 ∧ 𝜓) → (𝜑 → 𝑧 = 𝐴)) ↔ (∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → ∀𝑥(𝜑 → 𝑧 = 𝐴))) |
28 | 23, 27 | sylib 221 |
. . . . 5
⊢
(∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) → (∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → ∀𝑥(𝜑 → 𝑧 = 𝐴))) |
29 | 28 | eximdv 1925 |
. . . 4
⊢
(∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) → (∃𝑧∃𝑦(𝑧 = 𝐵 ∧ 𝜓) → ∃𝑧∀𝑥(𝜑 → 𝑧 = 𝐴))) |
30 | 11, 29 | syl5bi 245 |
. . 3
⊢
(∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) → (∃𝑥𝜑 → ∃𝑧∀𝑥(𝜑 → 𝑧 = 𝐴))) |
31 | 30 | imp 410 |
. 2
⊢
((∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) ∧ ∃𝑥𝜑) → ∃𝑧∀𝑥(𝜑 → 𝑧 = 𝐴)) |
32 | | pm4.24 567 |
. . . . . . . . 9
⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) |
33 | 32 | biimpi 219 |
. . . . . . . 8
⊢ (𝜑 → (𝜑 ∧ 𝜑)) |
34 | | anim12 809 |
. . . . . . . 8
⊢ (((𝜑 → 𝑧 = 𝐴) ∧ (𝜑 → 𝑤 = 𝐴)) → ((𝜑 ∧ 𝜑) → (𝑧 = 𝐴 ∧ 𝑤 = 𝐴))) |
35 | | eqtr3 2763 |
. . . . . . . 8
⊢ ((𝑧 = 𝐴 ∧ 𝑤 = 𝐴) → 𝑧 = 𝑤) |
36 | 33, 34, 35 | syl56 36 |
. . . . . . 7
⊢ (((𝜑 → 𝑧 = 𝐴) ∧ (𝜑 → 𝑤 = 𝐴)) → (𝜑 → 𝑧 = 𝑤)) |
37 | 36 | alanimi 1824 |
. . . . . 6
⊢
((∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑥(𝜑 → 𝑤 = 𝐴)) → ∀𝑥(𝜑 → 𝑧 = 𝑤)) |
38 | | 19.23v 1950 |
. . . . . 6
⊢
(∀𝑥(𝜑 → 𝑧 = 𝑤) ↔ (∃𝑥𝜑 → 𝑧 = 𝑤)) |
39 | 37, 38 | sylib 221 |
. . . . 5
⊢
((∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑥(𝜑 → 𝑤 = 𝐴)) → (∃𝑥𝜑 → 𝑧 = 𝑤)) |
40 | 39 | com12 32 |
. . . 4
⊢
(∃𝑥𝜑 → ((∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑥(𝜑 → 𝑤 = 𝐴)) → 𝑧 = 𝑤)) |
41 | 40 | alrimivv 1936 |
. . 3
⊢
(∃𝑥𝜑 → ∀𝑧∀𝑤((∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑥(𝜑 → 𝑤 = 𝐴)) → 𝑧 = 𝑤)) |
42 | 41 | adantl 485 |
. 2
⊢
((∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) ∧ ∃𝑥𝜑) → ∀𝑧∀𝑤((∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑥(𝜑 → 𝑤 = 𝐴)) → 𝑧 = 𝑤)) |
43 | | eqeq1 2741 |
. . . . 5
⊢ (𝑧 = 𝑤 → (𝑧 = 𝐴 ↔ 𝑤 = 𝐴)) |
44 | 43 | imbi2d 344 |
. . . 4
⊢ (𝑧 = 𝑤 → ((𝜑 → 𝑧 = 𝐴) ↔ (𝜑 → 𝑤 = 𝐴))) |
45 | 44 | albidv 1928 |
. . 3
⊢ (𝑧 = 𝑤 → (∀𝑥(𝜑 → 𝑧 = 𝐴) ↔ ∀𝑥(𝜑 → 𝑤 = 𝐴))) |
46 | 45 | eu4 2616 |
. 2
⊢
(∃!𝑧∀𝑥(𝜑 → 𝑧 = 𝐴) ↔ (∃𝑧∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑧∀𝑤((∀𝑥(𝜑 → 𝑧 = 𝐴) ∧ ∀𝑥(𝜑 → 𝑤 = 𝐴)) → 𝑧 = 𝑤))) |
47 | 31, 42, 46 | sylanbrc 586 |
1
⊢
((∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) ∧ ∃𝑥𝜑) → ∃!𝑧∀𝑥(𝜑 → 𝑧 = 𝐴)) |