MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas3 Structured version   Visualization version   GIF version

Theorem dchrelbas3 26748
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/n to the multiplicative monoid of , which is zero off the group of units of ℤ/n. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g 𝐺 = (DChr‘𝑁)
dchrval.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrval.b 𝐵 = (Base‘𝑍)
dchrval.u 𝑈 = (Unit‘𝑍)
dchrval.n (𝜑𝑁 ∈ ℕ)
dchrbas.b 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
dchrelbas3 (𝜑 → (𝑋𝐷 ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑁   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑁(𝑦)

Proof of Theorem dchrelbas3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dchrval.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrval.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrval.b . . 3 𝐵 = (Base‘𝑍)
4 dchrval.u . . 3 𝑈 = (Unit‘𝑍)
5 dchrval.n . . 3 (𝜑𝑁 ∈ ℕ)
6 dchrbas.b . . 3 𝐷 = (Base‘𝐺)
71, 2, 3, 4, 5, 6dchrelbas2 26747 . 2 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
8 fveq2 6891 . . . . . . . 8 (𝑧 = 𝑥 → (𝑋𝑧) = (𝑋𝑥))
98neeq1d 3000 . . . . . . 7 (𝑧 = 𝑥 → ((𝑋𝑧) ≠ 0 ↔ (𝑋𝑥) ≠ 0))
10 eleq1 2821 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝑈𝑥𝑈))
119, 10imbi12d 344 . . . . . 6 (𝑧 = 𝑥 → (((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
1211cbvralvw 3234 . . . . 5 (∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
135nnnn0d 12534 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
142zncrng 21106 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
1513, 14syl 17 . . . . . . . . . 10 (𝜑𝑍 ∈ CRing)
16 crngring 20070 . . . . . . . . . 10 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
1715, 16syl 17 . . . . . . . . 9 (𝜑𝑍 ∈ Ring)
18 eqid 2732 . . . . . . . . . 10 (mulGrp‘𝑍) = (mulGrp‘𝑍)
1918ringmgp 20064 . . . . . . . . 9 (𝑍 ∈ Ring → (mulGrp‘𝑍) ∈ Mnd)
2017, 19syl 17 . . . . . . . 8 (𝜑 → (mulGrp‘𝑍) ∈ Mnd)
21 cnring 20973 . . . . . . . . 9 fld ∈ Ring
22 eqid 2732 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2322ringmgp 20064 . . . . . . . . 9 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
2421, 23ax-mp 5 . . . . . . . 8 (mulGrp‘ℂfld) ∈ Mnd
2518, 3mgpbas 19995 . . . . . . . . . 10 𝐵 = (Base‘(mulGrp‘𝑍))
26 cnfldbas 20954 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
2722, 26mgpbas 19995 . . . . . . . . . 10 ℂ = (Base‘(mulGrp‘ℂfld))
28 eqid 2732 . . . . . . . . . . 11 (.r𝑍) = (.r𝑍)
2918, 28mgpplusg 19993 . . . . . . . . . 10 (.r𝑍) = (+g‘(mulGrp‘𝑍))
30 cnfldmul 20956 . . . . . . . . . . 11 · = (.r‘ℂfld)
3122, 30mgpplusg 19993 . . . . . . . . . 10 · = (+g‘(mulGrp‘ℂfld))
32 eqid 2732 . . . . . . . . . . 11 (1r𝑍) = (1r𝑍)
3318, 32ringidval 20008 . . . . . . . . . 10 (1r𝑍) = (0g‘(mulGrp‘𝑍))
34 cnfld1 20976 . . . . . . . . . . 11 1 = (1r‘ℂfld)
3522, 34ringidval 20008 . . . . . . . . . 10 1 = (0g‘(mulGrp‘ℂfld))
3625, 27, 29, 31, 33, 35ismhm 18675 . . . . . . . . 9 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (((mulGrp‘𝑍) ∈ Mnd ∧ (mulGrp‘ℂfld) ∈ Mnd) ∧ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
3736baib 536 . . . . . . . 8 (((mulGrp‘𝑍) ∈ Mnd ∧ (mulGrp‘ℂfld) ∈ Mnd) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
3820, 24, 37sylancl 586 . . . . . . 7 (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
3938adantr 481 . . . . . 6 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ (𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1)))
40 biimt 360 . . . . . . . . . . . . . . 15 ((𝑥𝑈𝑦𝑈) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
4140adantl 482 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑥𝑈𝑦𝑈)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
42 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝑥(.r𝑍)𝑦) → (𝑋𝑧) = (𝑋‘(𝑥(.r𝑍)𝑦)))
4342neeq1d 3000 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑥(.r𝑍)𝑦) → ((𝑋𝑧) ≠ 0 ↔ (𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0))
44 eleq1 2821 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑥(.r𝑍)𝑦) → (𝑧𝑈 ↔ (𝑥(.r𝑍)𝑦) ∈ 𝑈))
4543, 44imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑥(.r𝑍)𝑦) → (((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ((𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0 → (𝑥(.r𝑍)𝑦) ∈ 𝑈)))
46 simpllr 774 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈))
4717ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑍 ∈ Ring)
48 simprl 769 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
49 simprr 771 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
503, 28ringcl 20075 . . . . . . . . . . . . . . . . . . . . 21 ((𝑍 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑍)𝑦) ∈ 𝐵)
5147, 48, 49, 50syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑍)𝑦) ∈ 𝐵)
5245, 46, 51rspcdva 3613 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0 → (𝑥(.r𝑍)𝑦) ∈ 𝑈))
5315ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑍 ∈ CRing)
544, 28, 3unitmulclb 20199 . . . . . . . . . . . . . . . . . . . 20 ((𝑍 ∈ CRing ∧ 𝑥𝐵𝑦𝐵) → ((𝑥(.r𝑍)𝑦) ∈ 𝑈 ↔ (𝑥𝑈𝑦𝑈)))
5553, 48, 49, 54syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(.r𝑍)𝑦) ∈ 𝑈 ↔ (𝑥𝑈𝑦𝑈)))
5652, 55sylibd 238 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) ≠ 0 → (𝑥𝑈𝑦𝑈)))
5756necon1bd 2958 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (¬ (𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = 0))
5857imp 407 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = 0)
5911, 46, 48rspcdva 3613 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋𝑥) ≠ 0 → 𝑥𝑈))
60 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑦 → (𝑋𝑧) = (𝑋𝑦))
6160neeq1d 3000 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → ((𝑋𝑧) ≠ 0 ↔ (𝑋𝑦) ≠ 0))
62 eleq1 2821 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → (𝑧𝑈𝑦𝑈))
6361, 62imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑦 → (((𝑋𝑧) ≠ 0 → 𝑧𝑈) ↔ ((𝑋𝑦) ≠ 0 → 𝑦𝑈)))
6463, 46, 49rspcdva 3613 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋𝑦) ≠ 0 → 𝑦𝑈))
6559, 64anim12d 609 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0) → (𝑥𝑈𝑦𝑈)))
6665con3dimp 409 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ¬ ((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0))
67 neanior 3035 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0) ↔ ¬ ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0))
6867con2bii 357 . . . . . . . . . . . . . . . . . 18 (((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0) ↔ ¬ ((𝑋𝑥) ≠ 0 ∧ (𝑋𝑦) ≠ 0))
6966, 68sylibr 233 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0))
70 simplr 767 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → 𝑋:𝐵⟶ℂ)
7170, 48ffvelcdmd 7087 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋𝑥) ∈ ℂ)
7270, 49ffvelcdmd 7087 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋𝑦) ∈ ℂ)
7371, 72mul0ord 11866 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → (((𝑋𝑥) · (𝑋𝑦)) = 0 ↔ ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0)))
7473adantr 481 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → (((𝑋𝑥) · (𝑋𝑦)) = 0 ↔ ((𝑋𝑥) = 0 ∨ (𝑋𝑦) = 0)))
7569, 74mpbird 256 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑋𝑥) · (𝑋𝑦)) = 0)
7658, 75eqtr4d 2775 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
7776a1d 25 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
7876, 772thd 264 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) ∧ ¬ (𝑥𝑈𝑦𝑈)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
7941, 78pm2.61dan 811 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
8079pm5.74da 802 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))))
813, 4unitcl 20193 . . . . . . . . . . . . . . . 16 (𝑥𝑈𝑥𝐵)
823, 4unitcl 20193 . . . . . . . . . . . . . . . 16 (𝑦𝑈𝑦𝐵)
8381, 82anim12i 613 . . . . . . . . . . . . . . 15 ((𝑥𝑈𝑦𝑈) → (𝑥𝐵𝑦𝐵))
8483pm4.71ri 561 . . . . . . . . . . . . . 14 ((𝑥𝑈𝑦𝑈) ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑥𝑈𝑦𝑈)))
8584imbi1i 349 . . . . . . . . . . . . 13 (((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ (((𝑥𝐵𝑦𝐵) ∧ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
86 impexp 451 . . . . . . . . . . . . 13 ((((𝑥𝐵𝑦𝐵) ∧ (𝑥𝑈𝑦𝑈)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
8785, 86bitri 274 . . . . . . . . . . . 12 (((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
8880, 87bitr4di 288 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
89882albidv 1926 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (∀𝑥𝑦((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ∀𝑥𝑦((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
90 r2al 3194 . . . . . . . . . 10 (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
91 r2al 3194 . . . . . . . . . 10 (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑦((𝑥𝑈𝑦𝑈) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
9289, 90, 913bitr4g 313 . . . . . . . . 9 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ 𝑋:𝐵⟶ℂ) → (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
9392adantrr 715 . . . . . . . 8 (((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) ∧ (𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1)) → (∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ↔ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
9493pm5.32da 579 . . . . . . 7 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → (((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))) ↔ ((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))))
95 3anan32 1097 . . . . . . 7 ((𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ↔ ((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
96 an31 646 . . . . . . 7 (((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ) ↔ ((𝑋:𝐵⟶ℂ ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦))))
9794, 95, 963bitr4g 313 . . . . . 6 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → ((𝑋:𝐵⟶ℂ ∧ ∀𝑥𝐵𝑦𝐵 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
9839, 97bitrd 278 . . . . 5 ((𝜑 ∧ ∀𝑧𝐵 ((𝑋𝑧) ≠ 0 → 𝑧𝑈)) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
9912, 98sylan2br 595 . . . 4 ((𝜑 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
10099pm5.32da 579 . . 3 (𝜑 → ((∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ))))
101 ancom 461 . . 3 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))))
102 df-3an 1089 . . . . 5 ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) ↔ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))
103102anbi2i 623 . . . 4 ((𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))) ↔ (𝑋:𝐵⟶ℂ ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))))
104 an13 645 . . . 4 ((𝑋:𝐵⟶ℂ ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
105103, 104bitri 274 . . 3 ((𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈))) ↔ (∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈) ∧ ((∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1) ∧ 𝑋:𝐵⟶ℂ)))
106100, 101, 1053bitr4g 313 . 2 (𝜑 → ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)) ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))))
1077, 106bitrd 278 1 (𝜑 → (𝑋𝐷 ↔ (𝑋:𝐵⟶ℂ ∧ (∀𝑥𝑈𝑦𝑈 (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r𝑍)) = 1 ∧ ∀𝑥𝐵 ((𝑋𝑥) ≠ 0 → 𝑥𝑈)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087  wal 1539   = wceq 1541  wcel 2106  wne 2940  wral 3061  wf 6539  cfv 6543  (class class class)co 7411  cc 11110  0cc0 11112  1c1 11113   · cmul 11117  cn 12214  0cn0 12474  Basecbs 17146  .rcmulr 17200  Mndcmnd 18627   MndHom cmhm 18671  mulGrpcmgp 19989  1rcur 20006  Ringcrg 20058  CRingccrg 20059  Unitcui 20173  fldccnfld 20950  ℤ/nczn 21058  DChrcdchr 26742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-tpos 8213  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-ec 8707  df-qs 8711  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-2 12277  df-3 12278  df-4 12279  df-5 12280  df-6 12281  df-7 12282  df-8 12283  df-9 12284  df-n0 12475  df-z 12561  df-dec 12680  df-uz 12825  df-fz 13487  df-struct 17082  df-sets 17099  df-slot 17117  df-ndx 17129  df-base 17147  df-ress 17176  df-plusg 17212  df-mulr 17213  df-starv 17214  df-sca 17215  df-vsca 17216  df-ip 17217  df-tset 17218  df-ple 17219  df-ds 17221  df-unif 17222  df-0g 17389  df-imas 17456  df-qus 17457  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-mhm 18673  df-grp 18824  df-minusg 18825  df-sbg 18826  df-subg 19005  df-nsg 19006  df-eqg 19007  df-cmn 19652  df-abl 19653  df-mgp 19990  df-ur 20007  df-ring 20060  df-cring 20061  df-oppr 20154  df-dvdsr 20175  df-unit 20176  df-subrg 20321  df-lmod 20477  df-lss 20548  df-lsp 20588  df-sra 20791  df-rgmod 20792  df-lidl 20793  df-rsp 20794  df-2idl 20863  df-cnfld 20951  df-zring 21024  df-zn 21062  df-dchr 26743
This theorem is referenced by:  dchrelbasd  26749  dchrf  26752  dchrmulcl  26759  dchrinv  26771  lgsdchr  26865
  Copyright terms: Public domain W3C validator