Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle3 Structured version   Visualization version   GIF version

Theorem lhpexle3 40121
Description: There exists atom under a co-atom different from any three other elements. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l = (le‘𝐾)
lhpex1.a 𝐴 = (Atoms‘𝐾)
lhpex1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexle3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   𝑊,𝑝   𝑋,𝑝   𝑌,𝑝   𝑍,𝑝

Proof of Theorem lhpexle3
StepHypRef Expression
1 lhpex1.l . . . . 5 = (le‘𝐾)
2 lhpex1.a . . . . 5 𝐴 = (Atoms‘𝐾)
3 lhpex1.h . . . . 5 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexle2 40119 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
5 3anass 1094 . . . . 5 ((𝑝 𝑊𝑝𝑋𝑝𝑌) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌)))
65rexbii 3079 . . . 4 (∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌)))
74, 6sylib 218 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌)))
81, 2, 3lhpexle2 40119 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍))
98adantr 480 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍))
10 3anass 1094 . . . . . . 7 ((𝑝 𝑊𝑝𝑋𝑝𝑍) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍)))
1110rexbii 3079 . . . . . 6 (∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑍) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍)))
129, 11sylib 218 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍)))
131, 2, 3lhpexle2 40119 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑍))
14 3anass 1094 . . . . . . . . . . 11 ((𝑝 𝑊𝑝𝑌𝑝𝑍) ↔ (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍)))
1514rexbii 3079 . . . . . . . . . 10 (∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑍) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍)))
1613, 15sylib 218 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍)))
17163ad2ant1 1133 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍)))
18 simpl1 1192 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
19 simpl3l 1229 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑌𝐴)
20 simpl2l 1227 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑍𝐴)
21 simprl 770 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑋𝐴)
22 simpl3r 1230 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑌 𝑊)
23 simpl2r 1228 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑍 𝑊)
24 simprr 772 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → 𝑋 𝑊)
251, 2, 3lhpexle3lem 40120 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐴𝑍𝐴𝑋𝐴) ∧ (𝑌 𝑊𝑍 𝑊𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)))
2618, 19, 20, 21, 22, 23, 24, 25syl133anc 1395 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)))
27 df-3an 1088 . . . . . . . . . . . 12 ((𝑝𝑌𝑝𝑍𝑝𝑋) ↔ ((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
2827anbi2i 623 . . . . . . . . . . 11 ((𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)) ↔ (𝑝 𝑊 ∧ ((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋)))
29 3anass 1094 . . . . . . . . . . 11 ((𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋) ↔ (𝑝 𝑊 ∧ ((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋)))
3028, 29bitr4i 278 . . . . . . . . . 10 ((𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)) ↔ (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
3130rexbii 3079 . . . . . . . . 9 (∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍𝑝𝑋)) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
3226, 31sylib 218 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
3317, 32lhpexle1lem 40116 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋))
34 an31 648 . . . . . . . . . 10 (((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋) ↔ ((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
3534anbi2i 623 . . . . . . . . 9 ((𝑝 𝑊 ∧ ((𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋)) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌)))
36 3anass 1094 . . . . . . . . 9 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌)))
3735, 29, 363bitr4i 303 . . . . . . . 8 ((𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
3837rexbii 3079 . . . . . . 7 (∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑌𝑝𝑍) ∧ 𝑝𝑋) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
3933, 38sylib 218 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
40393expa 1118 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
4112, 40lhpexle1lem 40116 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌))
42 an32 646 . . . . . . 7 (((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌) ↔ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
4342anbi2i 623 . . . . . 6 ((𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌)) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍)))
44 3anass 1094 . . . . . 6 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍)))
4543, 36, 443bitr4i 303 . . . . 5 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
4645rexbii 3079 . . . 4 (∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑍) ∧ 𝑝𝑌) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
4741, 46sylib 218 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑍𝐴𝑍 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
487, 47lhpexle1lem 40116 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
49 df-3an 1088 . . . . 5 ((𝑝𝑋𝑝𝑌𝑝𝑍) ↔ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍))
5049anbi2i 623 . . . 4 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)) ↔ (𝑝 𝑊 ∧ ((𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍)))
5144, 50bitr4i 278 . . 3 ((𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍) ↔ (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
5251rexbii 3079 . 2 (∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌) ∧ 𝑝𝑍) ↔ ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
5348, 52sylib 218 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊 ∧ (𝑝𝑋𝑝𝑌𝑝𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5089  cfv 6481  lecple 17168  Atomscatm 39372  HLchlt 39459  LHypclh 40093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-lhyp 40097
This theorem is referenced by:  cdlemftr3  40674
  Copyright terms: Public domain W3C validator