MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an12s Structured version   Visualization version   GIF version

Theorem an12s 649
Description: Swap two conjuncts in antecedent. The label suffix "s" means that an12 645 is combined with syl 17 (or a variant). (Contributed by NM, 13-Mar-1996.)
Hypothesis
Ref Expression
an12s.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
an12s ((𝜓 ∧ (𝜑𝜒)) → 𝜃)

Proof of Theorem an12s
StepHypRef Expression
1 an12 645 . 2 ((𝜓 ∧ (𝜑𝜒)) ↔ (𝜑 ∧ (𝜓𝜒)))
2 an12s.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylbi 217 1 ((𝜓 ∧ (𝜑𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anabsan2  674  oecl  8501  oaass  8525  odi  8543  oen0  8550  oeworde  8557  ltexprlem4  10992  iccshftr  13447  iccshftl  13449  iccdil  13451  icccntr  13453  ndvdsadd  16380  eulerthlem2  16752  neips  23000  tx1stc  23537  filuni  23772  ufldom  23849  isch3  31170  unoplin  31849  hmoplin  31871  adjlnop  32015  chirredlem2  32320  btwnconn1lem12  36086  btwnconn1  36089  finxpreclem2  37378  poimirlem25  37639  mblfinlem4  37654  iscringd  37992  unichnidl  38025
  Copyright terms: Public domain W3C validator