MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an12s Structured version   Visualization version   GIF version

Theorem an12s 648
Description: Swap two conjuncts in antecedent. The label suffix "s" means that an12 644 is combined with syl 17 (or a variant). (Contributed by NM, 13-Mar-1996.)
Hypothesis
Ref Expression
an12s.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
an12s ((𝜓 ∧ (𝜑𝜒)) → 𝜃)

Proof of Theorem an12s
StepHypRef Expression
1 an12 644 . 2 ((𝜓 ∧ (𝜑𝜒)) ↔ (𝜑 ∧ (𝜓𝜒)))
2 an12s.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylbi 216 1 ((𝜓 ∧ (𝜑𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  anabsan2  673  oecl  8537  oaass  8561  odi  8579  oen0  8586  oeworde  8593  ltexprlem4  11034  iccshftr  13463  iccshftl  13465  iccdil  13467  icccntr  13469  ndvdsadd  16353  eulerthlem2  16715  neips  22617  tx1stc  23154  filuni  23389  ufldom  23466  isch3  30525  unoplin  31204  hmoplin  31226  adjlnop  31370  chirredlem2  31675  btwnconn1lem12  35101  btwnconn1  35104  finxpreclem2  36319  poimirlem25  36561  mblfinlem4  36576  iscringd  36914  unichnidl  36947
  Copyright terms: Public domain W3C validator