![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an12s | Structured version Visualization version GIF version |
Description: Swap two conjuncts in antecedent. The label suffix "s" means that an12 644 is combined with syl 17 (or a variant). (Contributed by NM, 13-Mar-1996.) |
Ref | Expression |
---|---|
an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
an12s | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an12 644 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anabsan2 673 oecl 8593 oaass 8617 odi 8635 oen0 8642 oeworde 8649 ltexprlem4 11108 iccshftr 13546 iccshftl 13548 iccdil 13550 icccntr 13552 ndvdsadd 16458 eulerthlem2 16829 neips 23142 tx1stc 23679 filuni 23914 ufldom 23991 isch3 31273 unoplin 31952 hmoplin 31974 adjlnop 32118 chirredlem2 32423 btwnconn1lem12 36062 btwnconn1 36065 finxpreclem2 37356 poimirlem25 37605 mblfinlem4 37620 iscringd 37958 unichnidl 37991 |
Copyright terms: Public domain | W3C validator |