| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an12s | Structured version Visualization version GIF version | ||
| Description: Swap two conjuncts in antecedent. The label suffix "s" means that an12 645 is combined with syl 17 (or a variant). (Contributed by NM, 13-Mar-1996.) |
| Ref | Expression |
|---|---|
| an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| an12s | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an12 645 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabsan2 674 oecl 8549 oaass 8573 odi 8591 oen0 8598 oeworde 8605 ltexprlem4 11053 iccshftr 13503 iccshftl 13505 iccdil 13507 icccntr 13509 ndvdsadd 16429 eulerthlem2 16801 neips 23051 tx1stc 23588 filuni 23823 ufldom 23900 isch3 31222 unoplin 31901 hmoplin 31923 adjlnop 32067 chirredlem2 32372 btwnconn1lem12 36116 btwnconn1 36119 finxpreclem2 37408 poimirlem25 37669 mblfinlem4 37684 iscringd 38022 unichnidl 38055 |
| Copyright terms: Public domain | W3C validator |