Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > an12s | Structured version Visualization version GIF version |
Description: Swap two conjuncts in antecedent. The label suffix "s" means that an12 642 is combined with syl 17 (or a variant). (Contributed by NM, 13-Mar-1996.) |
Ref | Expression |
---|---|
an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
an12s | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an12 642 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylbi 216 | 1 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: anabsan2 671 oecl 8367 oaass 8392 odi 8410 oen0 8417 oeworde 8424 ltexprlem4 10795 iccshftr 13218 iccshftl 13220 iccdil 13222 icccntr 13224 ndvdsadd 16119 eulerthlem2 16483 neips 22264 tx1stc 22801 filuni 23036 ufldom 23113 isch3 29603 unoplin 30282 hmoplin 30304 adjlnop 30448 chirredlem2 30753 btwnconn1lem12 34400 btwnconn1 34403 finxpreclem2 35561 poimirlem25 35802 mblfinlem4 35817 iscringd 36156 unichnidl 36189 |
Copyright terms: Public domain | W3C validator |