![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an12s | Structured version Visualization version GIF version |
Description: Swap two conjuncts in antecedent. The label suffix "s" means that an12 645 is combined with syl 17 (or a variant). (Contributed by NM, 13-Mar-1996.) |
Ref | Expression |
---|---|
an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
an12s | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an12 645 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylbi 217 | 1 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anabsan2 674 oecl 8573 oaass 8597 odi 8615 oen0 8622 oeworde 8629 ltexprlem4 11076 iccshftr 13522 iccshftl 13524 iccdil 13526 icccntr 13528 ndvdsadd 16443 eulerthlem2 16815 neips 23136 tx1stc 23673 filuni 23908 ufldom 23985 isch3 31269 unoplin 31948 hmoplin 31970 adjlnop 32114 chirredlem2 32419 btwnconn1lem12 36079 btwnconn1 36082 finxpreclem2 37372 poimirlem25 37631 mblfinlem4 37646 iscringd 37984 unichnidl 38017 |
Copyright terms: Public domain | W3C validator |