| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an12s | Structured version Visualization version GIF version | ||
| Description: Swap two conjuncts in antecedent. The label suffix "s" means that an12 645 is combined with syl 17 (or a variant). (Contributed by NM, 13-Mar-1996.) |
| Ref | Expression |
|---|---|
| an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| an12s | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an12 645 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabsan2 674 oecl 8501 oaass 8525 odi 8543 oen0 8550 oeworde 8557 ltexprlem4 10992 iccshftr 13447 iccshftl 13449 iccdil 13451 icccntr 13453 ndvdsadd 16380 eulerthlem2 16752 neips 23000 tx1stc 23537 filuni 23772 ufldom 23849 isch3 31170 unoplin 31849 hmoplin 31871 adjlnop 32015 chirredlem2 32320 btwnconn1lem12 36086 btwnconn1 36089 finxpreclem2 37378 poimirlem25 37639 mblfinlem4 37654 iscringd 37992 unichnidl 38025 |
| Copyright terms: Public domain | W3C validator |