MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an12s Structured version   Visualization version   GIF version

Theorem an12s 649
Description: Swap two conjuncts in antecedent. The label suffix "s" means that an12 645 is combined with syl 17 (or a variant). (Contributed by NM, 13-Mar-1996.)
Hypothesis
Ref Expression
an12s.1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
an12s ((𝜓 ∧ (𝜑𝜒)) → 𝜃)

Proof of Theorem an12s
StepHypRef Expression
1 an12 645 . 2 ((𝜓 ∧ (𝜑𝜒)) ↔ (𝜑 ∧ (𝜓𝜒)))
2 an12s.1 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
31, 2sylbi 217 1 ((𝜓 ∧ (𝜑𝜒)) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anabsan2  674  oecl  8573  oaass  8597  odi  8615  oen0  8622  oeworde  8629  ltexprlem4  11076  iccshftr  13522  iccshftl  13524  iccdil  13526  icccntr  13528  ndvdsadd  16443  eulerthlem2  16815  neips  23136  tx1stc  23673  filuni  23908  ufldom  23985  isch3  31269  unoplin  31948  hmoplin  31970  adjlnop  32114  chirredlem2  32419  btwnconn1lem12  36079  btwnconn1  36082  finxpreclem2  37372  poimirlem25  37631  mblfinlem4  37646  iscringd  37984  unichnidl  38017
  Copyright terms: Public domain W3C validator