| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an12s | Structured version Visualization version GIF version | ||
| Description: Swap two conjuncts in antecedent. The label suffix "s" means that an12 645 is combined with syl 17 (or a variant). (Contributed by NM, 13-Mar-1996.) |
| Ref | Expression |
|---|---|
| an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| an12s | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an12 645 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabsan2 674 oecl 8455 oaass 8479 odi 8497 oen0 8504 oeworde 8511 ltexprlem4 10933 iccshftr 13389 iccshftl 13391 iccdil 13393 icccntr 13395 ndvdsadd 16321 eulerthlem2 16693 neips 22998 tx1stc 23535 filuni 23770 ufldom 23847 isch3 31185 unoplin 31864 hmoplin 31886 adjlnop 32030 chirredlem2 32335 btwnconn1lem12 36076 btwnconn1 36079 finxpreclem2 37368 poimirlem25 37629 mblfinlem4 37644 iscringd 37982 unichnidl 38015 |
| Copyright terms: Public domain | W3C validator |