![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an12s | Structured version Visualization version GIF version |
Description: Swap two conjuncts in antecedent. The label suffix "s" means that an12 635 is combined with syl 17 (or a variant). (Contributed by NM, 13-Mar-1996.) |
Ref | Expression |
---|---|
an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
an12s | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an12 635 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylbi 209 | 1 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 |
This theorem is referenced by: anabsan2 664 oecl 7901 oaass 7925 odi 7943 oen0 7950 oeworde 7957 ltexprlem4 10196 iccshftr 12623 iccshftl 12625 iccdil 12627 icccntr 12629 ndvdsadd 15540 eulerthlem2 15891 neips 21325 tx1stc 21862 filuni 22097 ufldom 22174 isch3 28670 unoplin 29351 hmoplin 29373 adjlnop 29517 chirredlem2 29822 btwnconn1lem12 32794 btwnconn1 32797 finxpreclem2 33822 poimirlem25 34060 mblfinlem4 34075 iscringd 34421 unichnidl 34454 |
Copyright terms: Public domain | W3C validator |