| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an12s | Structured version Visualization version GIF version | ||
| Description: Swap two conjuncts in antecedent. The label suffix "s" means that an12 645 is combined with syl 17 (or a variant). (Contributed by NM, 13-Mar-1996.) |
| Ref | Expression |
|---|---|
| an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| an12s | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an12 645 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylbi 217 | 1 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anabsan2 674 oecl 8504 oaass 8528 odi 8546 oen0 8553 oeworde 8560 ltexprlem4 10999 iccshftr 13454 iccshftl 13456 iccdil 13458 icccntr 13460 ndvdsadd 16387 eulerthlem2 16759 neips 23007 tx1stc 23544 filuni 23779 ufldom 23856 isch3 31177 unoplin 31856 hmoplin 31878 adjlnop 32022 chirredlem2 32327 btwnconn1lem12 36093 btwnconn1 36096 finxpreclem2 37385 poimirlem25 37646 mblfinlem4 37661 iscringd 37999 unichnidl 38032 |
| Copyright terms: Public domain | W3C validator |