Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1021 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 33018. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1021.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
bnj1021.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj1021.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj1021.4 | ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) |
bnj1021.5 | ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
bnj1021.6 | ⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
bnj1021.13 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj1021.14 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
Ref | Expression |
---|---|
bnj1021 | ⊢ ∃𝑓∃𝑛∃𝑖∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1021.1 | . . . 4 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
2 | bnj1021.2 | . . . 4 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
3 | bnj1021.3 | . . . 4 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
4 | bnj1021.4 | . . . 4 ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) | |
5 | bnj1021.5 | . . . 4 ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) | |
6 | bnj1021.6 | . . . 4 ⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) | |
7 | bnj1021.13 | . . . 4 ⊢ 𝐷 = (ω ∖ {∅}) | |
8 | bnj1021.14 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | bnj996 32964 | . . 3 ⊢ ∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) |
10 | anclb 545 | . . . . . 6 ⊢ ((𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ (𝜒 ∧ 𝜏 ∧ 𝜂)))) | |
11 | bnj252 32710 | . . . . . . 7 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ (𝜃 ∧ (𝜒 ∧ 𝜏 ∧ 𝜂))) | |
12 | 11 | imbi2i 335 | . . . . . 6 ⊢ ((𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ (𝜒 ∧ 𝜏 ∧ 𝜂)))) |
13 | 10, 12 | bitr4i 277 | . . . . 5 ⊢ ((𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂))) |
14 | 13 | 2exbii 1847 | . . . 4 ⊢ (∃𝑚∃𝑝(𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ ∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂))) |
15 | 14 | 3exbii 1848 | . . 3 ⊢ (∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ ∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂))) |
16 | 9, 15 | mpbi 229 | . 2 ⊢ ∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) |
17 | 19.37v 1991 | . . . . 5 ⊢ (∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → ∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂))) | |
18 | bnj1019 32787 | . . . . . 6 ⊢ (∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) | |
19 | 18 | imbi2i 335 | . . . . 5 ⊢ ((𝜃 → ∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏))) |
20 | 17, 19 | bitri 274 | . . . 4 ⊢ (∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏))) |
21 | 20 | 2exbii 1847 | . . 3 ⊢ (∃𝑖∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ ∃𝑖∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏))) |
22 | 21 | 2exbii 1847 | . 2 ⊢ (∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ ∃𝑓∃𝑛∃𝑖∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏))) |
23 | 16, 22 | mpbi 229 | 1 ⊢ ∃𝑓∃𝑛∃𝑖∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1537 ∃wex 1777 ∈ wcel 2101 {cab 2710 ∀wral 3059 ∃wrex 3068 ∖ cdif 3886 ∅c0 4259 {csn 4564 ∪ ciun 4927 suc csuc 6272 Fn wfn 6442 ‘cfv 6447 ωcom 7732 ∧ w-bnj17 32693 predc-bnj14 32695 FrSe w-bnj15 32699 trClc-bnj18 32701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-tr 5195 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-fn 6450 df-om 7733 df-bnj17 32694 df-bnj18 32702 |
This theorem is referenced by: bnj907 32975 |
Copyright terms: Public domain | W3C validator |