![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1021 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 31623. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1021.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
bnj1021.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj1021.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj1021.4 | ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) |
bnj1021.5 | ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
bnj1021.6 | ⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
bnj1021.13 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj1021.14 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
Ref | Expression |
---|---|
bnj1021 | ⊢ ∃𝑓∃𝑛∃𝑖∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1021.1 | . . . 4 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
2 | bnj1021.2 | . . . 4 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
3 | bnj1021.3 | . . . 4 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
4 | bnj1021.4 | . . . 4 ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) | |
5 | bnj1021.5 | . . . 4 ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) | |
6 | bnj1021.6 | . . . 4 ⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) | |
7 | bnj1021.13 | . . . 4 ⊢ 𝐷 = (ω ∖ {∅}) | |
8 | bnj1021.14 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | bnj996 31570 | . . 3 ⊢ ∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) |
10 | anclb 543 | . . . . . 6 ⊢ ((𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ (𝜒 ∧ 𝜏 ∧ 𝜂)))) | |
11 | bnj252 31317 | . . . . . . 7 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ (𝜃 ∧ (𝜒 ∧ 𝜏 ∧ 𝜂))) | |
12 | 11 | imbi2i 328 | . . . . . 6 ⊢ ((𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ (𝜒 ∧ 𝜏 ∧ 𝜂)))) |
13 | 10, 12 | bitr4i 270 | . . . . 5 ⊢ ((𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂))) |
14 | 13 | 2exbii 1950 | . . . 4 ⊢ (∃𝑚∃𝑝(𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ ∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂))) |
15 | 14 | 3exbii 1951 | . . 3 ⊢ (∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ ∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂))) |
16 | 9, 15 | mpbi 222 | . 2 ⊢ ∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) |
17 | 19.37v 2098 | . . . . 5 ⊢ (∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → ∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂))) | |
18 | bnj1019 31395 | . . . . . 6 ⊢ (∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) | |
19 | 18 | imbi2i 328 | . . . . 5 ⊢ ((𝜃 → ∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏))) |
20 | 17, 19 | bitri 267 | . . . 4 ⊢ (∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏))) |
21 | 20 | 2exbii 1950 | . . 3 ⊢ (∃𝑖∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ ∃𝑖∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏))) |
22 | 21 | 2exbii 1950 | . 2 ⊢ (∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ ∃𝑓∃𝑛∃𝑖∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏))) |
23 | 16, 22 | mpbi 222 | 1 ⊢ ∃𝑓∃𝑛∃𝑖∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∃wex 1880 ∈ wcel 2166 {cab 2810 ∀wral 3116 ∃wrex 3117 ∖ cdif 3794 ∅c0 4143 {csn 4396 ∪ ciun 4739 suc csuc 5964 Fn wfn 6117 ‘cfv 6122 ωcom 7325 ∧ w-bnj17 31300 predc-bnj14 31302 FrSe w-bnj15 31306 trClc-bnj18 31308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pr 5126 ax-un 7208 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-rab 3125 df-v 3415 df-sbc 3662 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-iun 4741 df-br 4873 df-opab 4935 df-tr 4975 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-fn 6125 df-om 7326 df-bnj17 31301 df-bnj18 31309 |
This theorem is referenced by: bnj907 31580 |
Copyright terms: Public domain | W3C validator |