![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1021 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 34674. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1021.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
bnj1021.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj1021.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj1021.4 | ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) |
bnj1021.5 | ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
bnj1021.6 | ⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
bnj1021.13 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj1021.14 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
Ref | Expression |
---|---|
bnj1021 | ⊢ ∃𝑓∃𝑛∃𝑖∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1021.1 | . . . 4 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
2 | bnj1021.2 | . . . 4 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
3 | bnj1021.3 | . . . 4 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
4 | bnj1021.4 | . . . 4 ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) | |
5 | bnj1021.5 | . . . 4 ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) | |
6 | bnj1021.6 | . . . 4 ⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) | |
7 | bnj1021.13 | . . . 4 ⊢ 𝐷 = (ω ∖ {∅}) | |
8 | bnj1021.14 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | bnj996 34620 | . . 3 ⊢ ∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) |
10 | anclb 544 | . . . . . 6 ⊢ ((𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ (𝜒 ∧ 𝜏 ∧ 𝜂)))) | |
11 | bnj252 34367 | . . . . . . 7 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ (𝜃 ∧ (𝜒 ∧ 𝜏 ∧ 𝜂))) | |
12 | 11 | imbi2i 335 | . . . . . 6 ⊢ ((𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ (𝜒 ∧ 𝜏 ∧ 𝜂)))) |
13 | 10, 12 | bitr4i 277 | . . . . 5 ⊢ ((𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂))) |
14 | 13 | 2exbii 1843 | . . . 4 ⊢ (∃𝑚∃𝑝(𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ ∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂))) |
15 | 14 | 3exbii 1844 | . . 3 ⊢ (∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ ∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂))) |
16 | 9, 15 | mpbi 229 | . 2 ⊢ ∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) |
17 | 19.37v 1987 | . . . . 5 ⊢ (∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → ∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂))) | |
18 | bnj1019 34443 | . . . . . 6 ⊢ (∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) | |
19 | 18 | imbi2i 335 | . . . . 5 ⊢ ((𝜃 → ∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏))) |
20 | 17, 19 | bitri 274 | . . . 4 ⊢ (∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏))) |
21 | 20 | 2exbii 1843 | . . 3 ⊢ (∃𝑖∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ ∃𝑖∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏))) |
22 | 21 | 2exbii 1843 | . 2 ⊢ (∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ ∃𝑓∃𝑛∃𝑖∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏))) |
23 | 16, 22 | mpbi 229 | 1 ⊢ ∃𝑓∃𝑛∃𝑖∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2705 ∀wral 3058 ∃wrex 3067 ∖ cdif 3946 ∅c0 4326 {csn 4632 ∪ ciun 5000 suc csuc 6376 Fn wfn 6548 ‘cfv 6553 ωcom 7876 ∧ w-bnj17 34350 predc-bnj14 34352 FrSe w-bnj15 34356 trClc-bnj18 34358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-tr 5270 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-fn 6556 df-om 7877 df-bnj17 34351 df-bnj18 34359 |
This theorem is referenced by: bnj907 34631 |
Copyright terms: Public domain | W3C validator |