![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1021 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 34978. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1021.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
bnj1021.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj1021.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj1021.4 | ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) |
bnj1021.5 | ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
bnj1021.6 | ⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
bnj1021.13 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj1021.14 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
Ref | Expression |
---|---|
bnj1021 | ⊢ ∃𝑓∃𝑛∃𝑖∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1021.1 | . . . 4 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
2 | bnj1021.2 | . . . 4 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
3 | bnj1021.3 | . . . 4 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
4 | bnj1021.4 | . . . 4 ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) | |
5 | bnj1021.5 | . . . 4 ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) | |
6 | bnj1021.6 | . . . 4 ⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) | |
7 | bnj1021.13 | . . . 4 ⊢ 𝐷 = (ω ∖ {∅}) | |
8 | bnj1021.14 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | bnj996 34924 | . . 3 ⊢ ∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) |
10 | anclb 545 | . . . . . 6 ⊢ ((𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ (𝜒 ∧ 𝜏 ∧ 𝜂)))) | |
11 | bnj252 34671 | . . . . . . 7 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ (𝜃 ∧ (𝜒 ∧ 𝜏 ∧ 𝜂))) | |
12 | 11 | imbi2i 336 | . . . . . 6 ⊢ ((𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ (𝜒 ∧ 𝜏 ∧ 𝜂)))) |
13 | 10, 12 | bitr4i 278 | . . . . 5 ⊢ ((𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂))) |
14 | 13 | 2exbii 1847 | . . . 4 ⊢ (∃𝑚∃𝑝(𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ ∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂))) |
15 | 14 | 3exbii 1848 | . . 3 ⊢ (∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ ∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂))) |
16 | 9, 15 | mpbi 230 | . 2 ⊢ ∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) |
17 | 19.37v 1991 | . . . . 5 ⊢ (∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → ∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂))) | |
18 | bnj1019 34747 | . . . . . 6 ⊢ (∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) | |
19 | 18 | imbi2i 336 | . . . . 5 ⊢ ((𝜃 → ∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏))) |
20 | 17, 19 | bitri 275 | . . . 4 ⊢ (∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ (𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏))) |
21 | 20 | 2exbii 1847 | . . 3 ⊢ (∃𝑖∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ ∃𝑖∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏))) |
22 | 21 | 2exbii 1847 | . 2 ⊢ (∃𝑓∃𝑛∃𝑖∃𝑚∃𝑝(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂)) ↔ ∃𝑓∃𝑛∃𝑖∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏))) |
23 | 16, 22 | mpbi 230 | 1 ⊢ ∃𝑓∃𝑛∃𝑖∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃wrex 3076 ∖ cdif 3973 ∅c0 4352 {csn 4648 ∪ ciun 5015 suc csuc 6392 Fn wfn 6563 ‘cfv 6568 ωcom 7897 ∧ w-bnj17 34654 predc-bnj14 34656 FrSe w-bnj15 34660 trClc-bnj18 34662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-fn 6571 df-om 7898 df-bnj17 34655 df-bnj18 34663 |
This theorem is referenced by: bnj907 34935 |
Copyright terms: Public domain | W3C validator |