| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difin | Structured version Visualization version GIF version | ||
| Description: Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| difin | ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.61 404 | . . 3 ⊢ (¬ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 2 | anclb 545 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | |
| 3 | elin 3914 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 4 | 3 | imbi2i 336 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
| 5 | iman 401 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐴 ∩ 𝐵)) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∩ 𝐵))) | |
| 6 | 2, 4, 5 | 3bitr2i 299 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∩ 𝐵))) |
| 7 | 6 | con2bii 357 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∩ 𝐵)) ↔ ¬ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 8 | eldif 3908 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 9 | 1, 7, 8 | 3bitr4i 303 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∩ 𝐵)) ↔ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 10 | 9 | difeqri 4077 | 1 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ∩ cin 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-in 3905 |
| This theorem is referenced by: dfin4 4227 indif 4229 dfsymdif3 4255 notrab 4271 disjdif2 4429 dfsdom2 9024 hashdif 14327 isercolllem3 15581 iuncld 22980 llycmpkgen2 23485 1stckgen 23489 txkgen 23587 cmmbl 25482 indifbi 32521 disjdifprg2 32577 ldgenpisyslem1 34248 onint1 36565 nonrel 43741 nzprmdif 44476 |
| Copyright terms: Public domain | W3C validator |