MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difin Structured version   Visualization version   GIF version

Theorem difin 4195
Description: Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difin (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)

Proof of Theorem difin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm4.61 405 . . 3 (¬ (𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
2 anclb 546 . . . . 5 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 → (𝑥𝐴𝑥𝐵)))
3 elin 3903 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
43imbi2i 336 . . . . 5 ((𝑥𝐴𝑥 ∈ (𝐴𝐵)) ↔ (𝑥𝐴 → (𝑥𝐴𝑥𝐵)))
5 iman 402 . . . . 5 ((𝑥𝐴𝑥 ∈ (𝐴𝐵)) ↔ ¬ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)))
62, 4, 53bitr2i 299 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ ¬ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)))
76con2bii 358 . . 3 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)) ↔ ¬ (𝑥𝐴𝑥𝐵))
8 eldif 3897 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
91, 7, 83bitr4i 303 . 2 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)) ↔ 𝑥 ∈ (𝐴𝐵))
109difeqri 4059 1 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  cdif 3884  cin 3886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-in 3894
This theorem is referenced by:  dfin4  4201  indif  4203  dfsymdif3  4230  notrab  4245  disjdif2  4413  dfsdom2  8883  hashdif  14128  isercolllem3  15378  iuncld  22196  llycmpkgen2  22701  1stckgen  22705  txkgen  22803  cmmbl  24698  indifbi  30868  disjdifprg2  30915  ldgenpisyslem1  32131  onint1  34638  nonrel  41192  nzprmdif  41937
  Copyright terms: Public domain W3C validator