MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difin Structured version   Visualization version   GIF version

Theorem difin 4188
Description: Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difin (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)

Proof of Theorem difin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm4.61 408 . . 3 (¬ (𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
2 anclb 549 . . . . 5 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 → (𝑥𝐴𝑥𝐵)))
3 elin 3897 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
43imbi2i 339 . . . . 5 ((𝑥𝐴𝑥 ∈ (𝐴𝐵)) ↔ (𝑥𝐴 → (𝑥𝐴𝑥𝐵)))
5 iman 405 . . . . 5 ((𝑥𝐴𝑥 ∈ (𝐴𝐵)) ↔ ¬ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)))
62, 4, 53bitr2i 302 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ ¬ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)))
76con2bii 361 . . 3 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)) ↔ ¬ (𝑥𝐴𝑥𝐵))
8 eldif 3891 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
91, 7, 83bitr4i 306 . 2 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)) ↔ 𝑥 ∈ (𝐴𝐵))
109difeqri 4052 1 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  cdif 3878  cin 3880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-v 3443  df-dif 3884  df-in 3888
This theorem is referenced by:  dfin4  4194  indif  4196  dfsymdif3  4221  notrab  4232  disjdif2  4386  dfsdom2  8624  hashdif  13770  isercolllem3  15015  iuncld  21650  llycmpkgen2  22155  1stckgen  22159  txkgen  22257  cmmbl  24138  indifbi  30292  disjdifprg2  30339  ldgenpisyslem1  31532  onint1  33907  nonrel  40279  nzprmdif  41018
  Copyright terms: Public domain W3C validator