![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difin | Structured version Visualization version GIF version |
Description: Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difin | ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.61 396 | . . 3 ⊢ (¬ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | anclb 538 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | |
3 | elin 4059 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
4 | 3 | imbi2i 328 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
5 | iman 393 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐴 ∩ 𝐵)) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∩ 𝐵))) | |
6 | 2, 4, 5 | 3bitr2i 291 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∩ 𝐵))) |
7 | 6 | con2bii 350 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∩ 𝐵)) ↔ ¬ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
8 | eldif 3841 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
9 | 1, 7, 8 | 3bitr4i 295 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∩ 𝐵)) ↔ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
10 | 9 | difeqri 3993 | 1 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∖ cdif 3828 ∩ cin 3830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-v 3417 df-dif 3834 df-in 3838 |
This theorem is referenced by: dfin4 4133 indif 4135 dfsymdif3 4158 notrab 4169 disjdif2 4312 dfsdom2 8438 hashdif 13590 isercolllem3 14887 iuncld 21360 llycmpkgen2 21865 1stckgen 21869 txkgen 21967 cmmbl 23841 disjdifprg2 30095 ldgenpisyslem1 31067 onint1 33317 nonrel 39306 nzprmdif 40067 |
Copyright terms: Public domain | W3C validator |