MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difin Structured version   Visualization version   GIF version

Theorem difin 4235
Description: Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difin (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)

Proof of Theorem difin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm4.61 404 . . 3 (¬ (𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
2 anclb 545 . . . . 5 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 → (𝑥𝐴𝑥𝐵)))
3 elin 3930 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
43imbi2i 336 . . . . 5 ((𝑥𝐴𝑥 ∈ (𝐴𝐵)) ↔ (𝑥𝐴 → (𝑥𝐴𝑥𝐵)))
5 iman 401 . . . . 5 ((𝑥𝐴𝑥 ∈ (𝐴𝐵)) ↔ ¬ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)))
62, 4, 53bitr2i 299 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ ¬ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)))
76con2bii 357 . . 3 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)) ↔ ¬ (𝑥𝐴𝑥𝐵))
8 eldif 3924 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
91, 7, 83bitr4i 303 . 2 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)) ↔ 𝑥 ∈ (𝐴𝐵))
109difeqri 4091 1 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3911  cin 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-in 3921
This theorem is referenced by:  dfin4  4241  indif  4243  dfsymdif3  4269  notrab  4285  disjdif2  4443  dfsdom2  9064  hashdif  14378  isercolllem3  15633  iuncld  22932  llycmpkgen2  23437  1stckgen  23441  txkgen  23539  cmmbl  25435  indifbi  32449  disjdifprg2  32505  ldgenpisyslem1  34153  onint1  36437  nonrel  43573  nzprmdif  44308
  Copyright terms: Public domain W3C validator