MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difin Structured version   Visualization version   GIF version

Theorem difin 4127
Description: Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difin (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)

Proof of Theorem difin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm4.61 396 . . 3 (¬ (𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
2 anclb 538 . . . . 5 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 → (𝑥𝐴𝑥𝐵)))
3 elin 4059 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
43imbi2i 328 . . . . 5 ((𝑥𝐴𝑥 ∈ (𝐴𝐵)) ↔ (𝑥𝐴 → (𝑥𝐴𝑥𝐵)))
5 iman 393 . . . . 5 ((𝑥𝐴𝑥 ∈ (𝐴𝐵)) ↔ ¬ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)))
62, 4, 53bitr2i 291 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ ¬ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)))
76con2bii 350 . . 3 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)) ↔ ¬ (𝑥𝐴𝑥𝐵))
8 eldif 3841 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
91, 7, 83bitr4i 295 . 2 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)) ↔ 𝑥 ∈ (𝐴𝐵))
109difeqri 3993 1 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387   = wceq 1507  wcel 2050  cdif 3828  cin 3830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2750
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-v 3417  df-dif 3834  df-in 3838
This theorem is referenced by:  dfin4  4133  indif  4135  dfsymdif3  4158  notrab  4169  disjdif2  4312  dfsdom2  8438  hashdif  13590  isercolllem3  14887  iuncld  21360  llycmpkgen2  21865  1stckgen  21869  txkgen  21967  cmmbl  23841  disjdifprg2  30095  ldgenpisyslem1  31067  onint1  33317  nonrel  39306  nzprmdif  40067
  Copyright terms: Public domain W3C validator