Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difin | Structured version Visualization version GIF version |
Description: Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difin | ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.61 404 | . . 3 ⊢ (¬ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | anclb 545 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | |
3 | elin 3899 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
4 | 3 | imbi2i 335 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
5 | iman 401 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐴 ∩ 𝐵)) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∩ 𝐵))) | |
6 | 2, 4, 5 | 3bitr2i 298 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∩ 𝐵))) |
7 | 6 | con2bii 357 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∩ 𝐵)) ↔ ¬ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
8 | eldif 3893 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
9 | 1, 7, 8 | 3bitr4i 302 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∩ 𝐵)) ↔ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
10 | 9 | difeqri 4055 | 1 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 |
This theorem is referenced by: dfin4 4198 indif 4200 dfsymdif3 4227 notrab 4242 disjdif2 4410 dfsdom2 8836 hashdif 14056 isercolllem3 15306 iuncld 22104 llycmpkgen2 22609 1stckgen 22613 txkgen 22711 cmmbl 24603 indifbi 30769 disjdifprg2 30816 ldgenpisyslem1 32031 onint1 34565 nonrel 41081 nzprmdif 41826 |
Copyright terms: Public domain | W3C validator |