Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem6 Structured version   Visualization version   GIF version

Theorem dihglblem6 41327
Description: Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
dihglblem6.b 𝐵 = (Base‘𝐾)
dihglblem6.l = (le‘𝐾)
dihglblem6.m = (meet‘𝐾)
dihglblem6.a 𝐴 = (Atoms‘𝐾)
dihglblem6.g 𝐺 = (glb‘𝐾)
dihglblem6.h 𝐻 = (LHyp‘𝐾)
dihglblem6.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihglblem6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihglblem6.s 𝑃 = (LSubSp‘𝑈)
dihglblem6.d 𝐷 = (LSAtoms‘𝑈)
Assertion
Ref Expression
dihglblem6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Distinct variable groups:   𝑥,   𝑥,   𝑥,𝐵   𝑥,𝐷   𝑥,𝐺   𝑥,𝐻   𝑥,𝐼   𝑥,𝐾   𝑥,𝑃   𝑥,𝑆   𝑥,𝑊
Allowed substitution hints:   𝐴(𝑥)   𝑈(𝑥)

Proof of Theorem dihglblem6
Dummy variables 𝑣 𝑢 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihglblem6.b . . . 4 𝐵 = (Base‘𝐾)
2 dihglblem6.l . . . 4 = (le‘𝐾)
3 eqid 2729 . . . 4 (meet‘𝐾) = (meet‘𝐾)
4 dihglblem6.g . . . 4 𝐺 = (glb‘𝐾)
5 dihglblem6.h . . . 4 𝐻 = (LHyp‘𝐾)
6 eqid 2729 . . . 4 {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣(meet‘𝐾)𝑊)} = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣(meet‘𝐾)𝑊)}
7 eqid 2729 . . . 4 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
8 dihglblem6.i . . . 4 𝐼 = ((DIsoH‘𝐾)‘𝑊)
91, 2, 3, 4, 5, 6, 7, 8dihglblem4 41284 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥))
10 fal 1554 . . . . 5 ¬ ⊥
11 dihglblem6.s . . . . . . . 8 𝑃 = (LSubSp‘𝑈)
12 dihglblem6.d . . . . . . . 8 𝐷 = (LSAtoms‘𝑈)
13 dihglblem6.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
14 simpll 766 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
155, 13, 14dvhlmod 41097 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → 𝑈 ∈ LMod)
16 simplll 774 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → 𝐾 ∈ HL)
17 hlclat 39344 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ CLat)
1816, 17syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → 𝐾 ∈ CLat)
19 simplrl 776 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → 𝑆𝐵)
201, 4clatglbcl 18446 . . . . . . . . . 10 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
2118, 19, 20syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → (𝐺𝑆) ∈ 𝐵)
221, 5, 8, 13, 11dihlss 41237 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑆) ∈ 𝐵) → (𝐼‘(𝐺𝑆)) ∈ 𝑃)
2314, 21, 22syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → (𝐼‘(𝐺𝑆)) ∈ 𝑃)
241, 4, 5, 13, 8, 11dihglblem5 41285 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → 𝑥𝑆 (𝐼𝑥) ∈ 𝑃)
2524adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → 𝑥𝑆 (𝐼𝑥) ∈ 𝑃)
26 simpr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥))
2711, 12, 15, 23, 25, 26lpssat 38999 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥)) → ∃𝑝𝐷 (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆))))
2827ex 412 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → ((𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥) → ∃𝑝𝐷 (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))))
29 simp1l 1198 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
305, 13, 8, 12dih1dimat 41317 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝𝐷) → 𝑝 ∈ ran 𝐼)
3130adantlr 715 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) → 𝑝 ∈ ran 𝐼)
32313adant3 1132 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → 𝑝 ∈ ran 𝐼)
335, 8dihcnvid2 41260 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑝 ∈ ran 𝐼) → (𝐼‘(𝐼𝑝)) = 𝑝)
3429, 32, 33syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → (𝐼‘(𝐼𝑝)) = 𝑝)
35 simp3l 1202 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → 𝑝 𝑥𝑆 (𝐼𝑥))
36 ssiin 5014 . . . . . . . . . . . . 13 (𝑝 𝑥𝑆 (𝐼𝑥) ↔ ∀𝑥𝑆 𝑝 ⊆ (𝐼𝑥))
3735, 36sylib 218 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → ∀𝑥𝑆 𝑝 ⊆ (𝐼𝑥))
38 simplll 774 . . . . . . . . . . . . . . . 16 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) ∧ 𝑥𝑆) → (𝐾 ∈ HL ∧ 𝑊𝐻))
39 simpll 766 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) → (𝐾 ∈ HL ∧ 𝑊𝐻))
401, 5, 8, 13, 11dihf11 41254 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:𝐵1-1𝑃)
41 f1f1orn 6793 . . . . . . . . . . . . . . . . . . 19 (𝐼:𝐵1-1𝑃𝐼:𝐵1-1-onto→ran 𝐼)
4239, 40, 413syl 18 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) → 𝐼:𝐵1-1-onto→ran 𝐼)
43 f1ocnvdm 7242 . . . . . . . . . . . . . . . . . 18 ((𝐼:𝐵1-1-onto→ran 𝐼𝑝 ∈ ran 𝐼) → (𝐼𝑝) ∈ 𝐵)
4442, 31, 43syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) → (𝐼𝑝) ∈ 𝐵)
4544adantr 480 . . . . . . . . . . . . . . . 16 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) ∧ 𝑥𝑆) → (𝐼𝑝) ∈ 𝐵)
46 simplrl 776 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) → 𝑆𝐵)
4746sselda 3943 . . . . . . . . . . . . . . . 16 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) ∧ 𝑥𝑆) → 𝑥𝐵)
481, 2, 5, 8dihord 41251 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑝) ∈ 𝐵𝑥𝐵) → ((𝐼‘(𝐼𝑝)) ⊆ (𝐼𝑥) ↔ (𝐼𝑝) 𝑥))
4938, 45, 47, 48syl3anc 1373 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) ∧ 𝑥𝑆) → ((𝐼‘(𝐼𝑝)) ⊆ (𝐼𝑥) ↔ (𝐼𝑝) 𝑥))
5039, 31, 33syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) → (𝐼‘(𝐼𝑝)) = 𝑝)
5150adantr 480 . . . . . . . . . . . . . . . 16 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) ∧ 𝑥𝑆) → (𝐼‘(𝐼𝑝)) = 𝑝)
5251sseq1d 3975 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) ∧ 𝑥𝑆) → ((𝐼‘(𝐼𝑝)) ⊆ (𝐼𝑥) ↔ 𝑝 ⊆ (𝐼𝑥)))
5349, 52bitr3d 281 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) ∧ 𝑥𝑆) → ((𝐼𝑝) 𝑥𝑝 ⊆ (𝐼𝑥)))
5453ralbidva 3154 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷) → (∀𝑥𝑆 (𝐼𝑝) 𝑥 ↔ ∀𝑥𝑆 𝑝 ⊆ (𝐼𝑥)))
55543adant3 1132 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → (∀𝑥𝑆 (𝐼𝑝) 𝑥 ↔ ∀𝑥𝑆 𝑝 ⊆ (𝐼𝑥)))
5637, 55mpbird 257 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → ∀𝑥𝑆 (𝐼𝑝) 𝑥)
57 simp1ll 1237 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → 𝐾 ∈ HL)
5857, 17syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → 𝐾 ∈ CLat)
59443adant3 1132 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → (𝐼𝑝) ∈ 𝐵)
60 simp1rl 1239 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → 𝑆𝐵)
611, 2, 4clatleglb 18459 . . . . . . . . . . . 12 ((𝐾 ∈ CLat ∧ (𝐼𝑝) ∈ 𝐵𝑆𝐵) → ((𝐼𝑝) (𝐺𝑆) ↔ ∀𝑥𝑆 (𝐼𝑝) 𝑥))
6258, 59, 60, 61syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → ((𝐼𝑝) (𝐺𝑆) ↔ ∀𝑥𝑆 (𝐼𝑝) 𝑥))
6356, 62mpbird 257 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → (𝐼𝑝) (𝐺𝑆))
6458, 60, 20syl2anc 584 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → (𝐺𝑆) ∈ 𝐵)
651, 2, 5, 8dihord 41251 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐼𝑝) ∈ 𝐵 ∧ (𝐺𝑆) ∈ 𝐵) → ((𝐼‘(𝐼𝑝)) ⊆ (𝐼‘(𝐺𝑆)) ↔ (𝐼𝑝) (𝐺𝑆)))
6629, 59, 64, 65syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → ((𝐼‘(𝐼𝑝)) ⊆ (𝐼‘(𝐺𝑆)) ↔ (𝐼𝑝) (𝐺𝑆)))
6763, 66mpbird 257 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → (𝐼‘(𝐼𝑝)) ⊆ (𝐼‘(𝐺𝑆)))
6834, 67eqsstrrd 3979 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → 𝑝 ⊆ (𝐼‘(𝐺𝑆)))
69 simp3r 1203 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))
7068, 69pm2.21fal 1562 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) ∧ 𝑝𝐷 ∧ (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆)))) → ⊥)
7170rexlimdv3a 3138 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → (∃𝑝𝐷 (𝑝 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑝 ⊆ (𝐼‘(𝐺𝑆))) → ⊥))
7228, 71syld 47 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → ((𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥) → ⊥))
7310, 72mtoi 199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → ¬ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥))
74 dfpss3 4048 . . . . . 6 ((𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥) ↔ ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆))))
7574notbii 320 . . . . 5 (¬ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥) ↔ ¬ ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆))))
76 iman 401 . . . . 5 (((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) → 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆))) ↔ ¬ ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) ∧ ¬ 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆))))
77 anclb 545 . . . . 5 (((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) → 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆))) ↔ ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) → ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) ∧ 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆)))))
7875, 76, 773bitr2i 299 . . . 4 (¬ (𝐼‘(𝐺𝑆)) ⊊ 𝑥𝑆 (𝐼𝑥) ↔ ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) → ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) ∧ 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆)))))
7973, 78sylib 218 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) → ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) ∧ 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆)))))
809, 79mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) ∧ 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆))))
81 eqss 3959 . 2 ((𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥) ↔ ((𝐼‘(𝐺𝑆)) ⊆ 𝑥𝑆 (𝐼𝑥) ∧ 𝑥𝑆 (𝐼𝑥) ⊆ (𝐼‘(𝐺𝑆))))
8280, 81sylibr 234 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐵𝑆 ≠ ∅)) → (𝐼‘(𝐺𝑆)) = 𝑥𝑆 (𝐼𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wfal 1552  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  wss 3911  wpss 3912  c0 4292   ciin 4952   class class class wbr 5102  ccnv 5630  ran crn 5632  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  glbcglb 18251  meetcmee 18253  CLatccla 18439  LSubSpclss 20869  LSAtomsclsa 38960  Atomscatm 39249  HLchlt 39336  LHypclh 39971  DVecHcdvh 41065  DIsoBcdib 41125  DIsoHcdih 41215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-riotaBAD 38939
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-undef 8229  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-0g 17380  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-p1 18365  df-lat 18373  df-clat 18440  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-cntz 19231  df-lsm 19550  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-drng 20651  df-lmod 20800  df-lss 20870  df-lsp 20910  df-lvec 21042  df-lsatoms 38962  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-llines 39485  df-lplanes 39486  df-lvols 39487  df-lines 39488  df-psubsp 39490  df-pmap 39491  df-padd 39783  df-lhyp 39975  df-laut 39976  df-ldil 40091  df-ltrn 40092  df-trl 40146  df-tendo 40742  df-edring 40744  df-disoa 41016  df-dvech 41066  df-dib 41126  df-dic 41160  df-dih 41216
This theorem is referenced by:  dihglb  41328
  Copyright terms: Public domain W3C validator