Step | Hyp | Ref
| Expression |
1 | | mnuunid.1 |
. 2
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
2 | | mnuunid.2 |
. 2
⊢ (𝜑 → 𝑈 ∈ 𝑀) |
3 | | mnuunid.3 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
4 | 3 | snssd 4739 |
. . . 4
⊢ (𝜑 → {𝐴} ⊆ 𝑈) |
5 | 1, 2, 3, 4 | mnuop3d 41778 |
. . 3
⊢ (𝜑 → ∃𝑤 ∈ 𝑈 ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ {𝐴}𝑖 ∈ 𝑣 → ∃𝑢 ∈ {𝐴} (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
6 | | simprl 767 |
. . . 4
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ {𝐴}𝑖 ∈ 𝑣 → ∃𝑢 ∈ {𝐴} (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → 𝑤 ∈ 𝑈) |
7 | | sseq2 3943 |
. . . . 5
⊢ (𝑎 = 𝑤 → (∪ 𝐴 ⊆ 𝑎 ↔ ∪ 𝐴 ⊆ 𝑤)) |
8 | 7 | adantl 481 |
. . . 4
⊢ (((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ {𝐴}𝑖 ∈ 𝑣 → ∃𝑢 ∈ {𝐴} (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ∧ 𝑎 = 𝑤) → (∪ 𝐴 ⊆ 𝑎 ↔ ∪ 𝐴 ⊆ 𝑤)) |
9 | | elssuni 4868 |
. . . . . . 7
⊢ (𝑖 ∈ 𝐴 → 𝑖 ⊆ ∪ 𝐴) |
10 | 9 | rgen 3073 |
. . . . . 6
⊢
∀𝑖 ∈
𝐴 𝑖 ⊆ ∪ 𝐴 |
11 | | simprr 769 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ {𝐴}𝑖 ∈ 𝑣 → ∃𝑢 ∈ {𝐴} (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ {𝐴}𝑖 ∈ 𝑣 → ∃𝑢 ∈ {𝐴} (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
12 | | eleq2 2827 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝐴 → (𝑖 ∈ 𝑣 ↔ 𝑖 ∈ 𝐴)) |
13 | 12 | rexsng 4607 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑈 → (∃𝑣 ∈ {𝐴}𝑖 ∈ 𝑣 ↔ 𝑖 ∈ 𝐴)) |
14 | 3, 13 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (∃𝑣 ∈ {𝐴}𝑖 ∈ 𝑣 ↔ 𝑖 ∈ 𝐴)) |
15 | | eleq2 2827 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝐴 → (𝑖 ∈ 𝑢 ↔ 𝑖 ∈ 𝐴)) |
16 | | unieq 4847 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 = 𝐴 → ∪ 𝑢 = ∪
𝐴) |
17 | 16 | sseq1d 3948 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝐴 → (∪ 𝑢 ⊆ 𝑤 ↔ ∪ 𝐴 ⊆ 𝑤)) |
18 | 15, 17 | anbi12d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝐴 → ((𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) ↔ (𝑖 ∈ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑤))) |
19 | 18 | rexsng 4607 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑈 → (∃𝑢 ∈ {𝐴} (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) ↔ (𝑖 ∈ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑤))) |
20 | 3, 19 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (∃𝑢 ∈ {𝐴} (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤) ↔ (𝑖 ∈ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑤))) |
21 | 14, 20 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((∃𝑣 ∈ {𝐴}𝑖 ∈ 𝑣 → ∃𝑢 ∈ {𝐴} (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ (𝑖 ∈ 𝐴 → (𝑖 ∈ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑤)))) |
22 | | anclb 545 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ 𝐴 → ∪ 𝐴 ⊆ 𝑤) ↔ (𝑖 ∈ 𝐴 → (𝑖 ∈ 𝐴 ∧ ∪ 𝐴 ⊆ 𝑤))) |
23 | 21, 22 | bitr4di 288 |
. . . . . . . . . . 11
⊢ (𝜑 → ((∃𝑣 ∈ {𝐴}𝑖 ∈ 𝑣 → ∃𝑢 ∈ {𝐴} (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ (𝑖 ∈ 𝐴 → ∪ 𝐴 ⊆ 𝑤))) |
24 | 23 | imbi2d 340 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑖 ∈ 𝐴 → (∃𝑣 ∈ {𝐴}𝑖 ∈ 𝑣 → ∃𝑢 ∈ {𝐴} (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ↔ (𝑖 ∈ 𝐴 → (𝑖 ∈ 𝐴 → ∪ 𝐴 ⊆ 𝑤)))) |
25 | | pm5.4 389 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ 𝐴 → (𝑖 ∈ 𝐴 → ∪ 𝐴 ⊆ 𝑤)) ↔ (𝑖 ∈ 𝐴 → ∪ 𝐴 ⊆ 𝑤)) |
26 | 24, 25 | bitrdi 286 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑖 ∈ 𝐴 → (∃𝑣 ∈ {𝐴}𝑖 ∈ 𝑣 → ∃𝑢 ∈ {𝐴} (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) ↔ (𝑖 ∈ 𝐴 → ∪ 𝐴 ⊆ 𝑤))) |
27 | 26 | ralbidv2 3118 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑖 ∈ 𝐴 (∃𝑣 ∈ {𝐴}𝑖 ∈ 𝑣 → ∃𝑢 ∈ {𝐴} (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ ∀𝑖 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑤)) |
28 | 27 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ {𝐴}𝑖 ∈ 𝑣 → ∃𝑢 ∈ {𝐴} (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → (∀𝑖 ∈ 𝐴 (∃𝑣 ∈ {𝐴}𝑖 ∈ 𝑣 → ∃𝑢 ∈ {𝐴} (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ↔ ∀𝑖 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑤)) |
29 | 11, 28 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ {𝐴}𝑖 ∈ 𝑣 → ∃𝑢 ∈ {𝐴} (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → ∀𝑖 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑤) |
30 | | sstr2 3924 |
. . . . . . 7
⊢ (𝑖 ⊆ ∪ 𝐴
→ (∪ 𝐴 ⊆ 𝑤 → 𝑖 ⊆ 𝑤)) |
31 | 30 | ral2imi 3081 |
. . . . . 6
⊢
(∀𝑖 ∈
𝐴 𝑖 ⊆ ∪ 𝐴 → (∀𝑖 ∈ 𝐴 ∪ 𝐴 ⊆ 𝑤 → ∀𝑖 ∈ 𝐴 𝑖 ⊆ 𝑤)) |
32 | 10, 29, 31 | mpsyl 68 |
. . . . 5
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ {𝐴}𝑖 ∈ 𝑣 → ∃𝑢 ∈ {𝐴} (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → ∀𝑖 ∈ 𝐴 𝑖 ⊆ 𝑤) |
33 | | unissb 4870 |
. . . . 5
⊢ (∪ 𝐴
⊆ 𝑤 ↔
∀𝑖 ∈ 𝐴 𝑖 ⊆ 𝑤) |
34 | 32, 33 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ {𝐴}𝑖 ∈ 𝑣 → ∃𝑢 ∈ {𝐴} (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → ∪
𝐴 ⊆ 𝑤) |
35 | 6, 8, 34 | rspcedvd 3555 |
. . 3
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ {𝐴}𝑖 ∈ 𝑣 → ∃𝑢 ∈ {𝐴} (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → ∃𝑎 ∈ 𝑈 ∪ 𝐴 ⊆ 𝑎) |
36 | 5, 35 | rexlimddv 3219 |
. 2
⊢ (𝜑 → ∃𝑎 ∈ 𝑈 ∪ 𝐴 ⊆ 𝑎) |
37 | 1, 2, 36 | mnuss2d 41771 |
1
⊢ (𝜑 → ∪ 𝐴
∈ 𝑈) |