| Step | Hyp | Ref
| Expression |
| 1 | | neq0 4352 |
. . 3
⊢ (¬
{𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} = ∅ ↔ ∃𝑡 𝑡 ∈ {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶}) |
| 2 | | 2z 12649 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
| 3 | | iddvds 16307 |
. . . . . . . 8
⊢ (2 ∈
ℤ → 2 ∥ 2) |
| 4 | 2, 3 | ax-mp 5 |
. . . . . . 7
⊢ 2 ∥
2 |
| 5 | | df-2 12329 |
. . . . . . 7
⊢ 2 = (1 +
1) |
| 6 | 4, 5 | breqtri 5168 |
. . . . . 6
⊢ 2 ∥
(1 + 1) |
| 7 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑡 ∈ V |
| 8 | | fzfi 14013 |
. . . . . . . . . . . . 13
⊢
(0...𝑁) ∈
Fin |
| 9 | | rabfi 9303 |
. . . . . . . . . . . . 13
⊢
((0...𝑁) ∈ Fin
→ {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∈ Fin) |
| 10 | 8, 9 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∈ Fin |
| 11 | | diffi 9215 |
. . . . . . . . . . . 12
⊢ ({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∈ Fin → ({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡}) ∈ Fin) |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡}) ∈ Fin |
| 13 | | neldifsn 4792 |
. . . . . . . . . . 11
⊢ ¬
𝑡 ∈ ({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡}) |
| 14 | 12, 13 | pm3.2i 470 |
. . . . . . . . . 10
⊢ (({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡}) ∈ Fin ∧ ¬ 𝑡 ∈ ({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡})) |
| 15 | | hashunsng 14431 |
. . . . . . . . . 10
⊢ (𝑡 ∈ V → ((({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡}) ∈ Fin ∧ ¬ 𝑡 ∈ ({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡})) → (♯‘(({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡}) ∪ {𝑡})) = ((♯‘({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡})) + 1))) |
| 16 | 7, 14, 15 | mp2 9 |
. . . . . . . . 9
⊢
(♯‘(({𝑦
∈ (0...𝑁) ∣
∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡}) ∪ {𝑡})) = ((♯‘({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡})) + 1) |
| 17 | | difsnid 4810 |
. . . . . . . . . 10
⊢ (𝑡 ∈ {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} → (({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡}) ∪ {𝑡}) = {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶}) |
| 18 | 17 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝑡 ∈ {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} → (♯‘(({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡}) ∪ {𝑡})) = (♯‘{𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶})) |
| 19 | 16, 18 | eqtr3id 2791 |
. . . . . . . 8
⊢ (𝑡 ∈ {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} → ((♯‘({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡})) + 1) = (♯‘{𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶})) |
| 20 | 19 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶}) → ((♯‘({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡})) + 1) = (♯‘{𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶})) |
| 21 | | sneq 4636 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑡 → {𝑦} = {𝑡}) |
| 22 | 21 | difeq2d 4126 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑡 → ((0...𝑁) ∖ {𝑦}) = ((0...𝑁) ∖ {𝑡})) |
| 23 | 22 | rexeqdv 3327 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑡 → (∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 24 | 23 | ralbidv 3178 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑡 → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 25 | 24 | elrab 3692 |
. . . . . . . . 9
⊢ (𝑡 ∈ {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ↔ (𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 26 | | poimirlem25.5 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝑁 ≠ ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 27 | 26 | ralrimiva 3146 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 28 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗𝑁 |
| 29 | | nfcsb1v 3923 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 |
| 30 | 28, 29 | nfne 3043 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑗 𝑁 ≠ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 |
| 31 | | csbeq1a 3913 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑡 → ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 32 | 31 | neeq2d 3001 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑡 → (𝑁 ≠ ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ 𝑁 ≠ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 33 | 30, 32 | rspc 3610 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ (0...𝑁) → (∀𝑗 ∈ (0...𝑁)𝑁 ≠ ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → 𝑁 ≠ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 34 | 27, 33 | mpan9 506 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ (0...𝑁)) → 𝑁 ≠ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 35 | | nesym 2997 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ≠ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = 𝑁) |
| 36 | 34, 35 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ (0...𝑁)) → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = 𝑁) |
| 37 | | nfv 1914 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗(𝜑 ∧ 𝑡 ∈ (0...𝑁)) |
| 38 | 29 | nfel1 2922 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...𝑁) |
| 39 | 37, 38 | nfim 1896 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑗((𝜑 ∧ 𝑡 ∈ (0...𝑁)) → ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...𝑁)) |
| 40 | | eleq1w 2824 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑡 → (𝑗 ∈ (0...𝑁) ↔ 𝑡 ∈ (0...𝑁))) |
| 41 | 40 | anbi2d 630 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑡 → ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑡 ∈ (0...𝑁)))) |
| 42 | 31 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑡 → (⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...𝑁) ↔ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...𝑁))) |
| 43 | 41, 42 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑡 → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...𝑁)) ↔ ((𝜑 ∧ 𝑡 ∈ (0...𝑁)) → ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...𝑁)))) |
| 44 | | poimirlem25.3 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑇:(1...𝑁)⟶(0..^𝐾)) |
| 45 | | ovex 7464 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(0..^𝐾) ∈
V |
| 46 | | ovex 7464 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(1...𝑁) ∈
V |
| 47 | 45, 46 | elmap 8911 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑇 ∈ ((0..^𝐾) ↑m (1...𝑁)) ↔ 𝑇:(1...𝑁)⟶(0..^𝐾)) |
| 48 | 44, 47 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑇 ∈ ((0..^𝐾) ↑m (1...𝑁))) |
| 49 | | poimirlem25.4 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) |
| 50 | | fzfi 14013 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(1...𝑁) ∈
Fin |
| 51 | | f1oexrnex 7949 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑈:(1...𝑁)–1-1-onto→(1...𝑁) ∧ (1...𝑁) ∈ Fin) → 𝑈 ∈ V) |
| 52 | 50, 51 | mpan2 691 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈 ∈ V) |
| 53 | | f1oeq1 6836 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 = 𝑈 → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ 𝑈:(1...𝑁)–1-1-onto→(1...𝑁))) |
| 54 | 53 | elabg 3676 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑈 ∈ V → (𝑈 ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ 𝑈:(1...𝑁)–1-1-onto→(1...𝑁))) |
| 55 | 52, 54 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → (𝑈 ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ 𝑈:(1...𝑁)–1-1-onto→(1...𝑁))) |
| 56 | 55 | ibir 268 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈 ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 57 | 49, 56 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑈 ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 58 | | opelxpi 5722 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑇 ∈ ((0..^𝐾) ↑m (1...𝑁)) ∧ 𝑈 ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → 〈𝑇, 𝑈〉 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 59 | 48, 57, 58 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 〈𝑇, 𝑈〉 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 60 | 59 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 〈𝑇, 𝑈〉 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 61 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑠〈𝑇, 𝑈〉 |
| 62 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑠(𝜑 ∧ 𝑗 ∈ (0...𝑁)) |
| 63 | | nfcsb1v 3923 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑠⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 |
| 64 | 63 | nfel1 2922 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑠⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...𝑁) |
| 65 | 62, 64 | nfim 1896 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑠((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...𝑁)) |
| 66 | | csbeq1a 3913 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 = 〈𝑇, 𝑈〉 → 𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 67 | 66 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 = 〈𝑇, 𝑈〉 → (𝐶 ∈ (0...𝑁) ↔ ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...𝑁))) |
| 68 | 67 | imbi2d 340 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 = 〈𝑇, 𝑈〉 → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝐶 ∈ (0...𝑁)) ↔ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...𝑁)))) |
| 69 | | elun 4153 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑝 ∈ ({1} ∪ {0}) ↔
(𝑝 ∈ {1} ∨ 𝑝 ∈ {0})) |
| 70 | | fzofzp1 13803 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑖 ∈ (0..^𝐾) → (𝑖 + 1) ∈ (0...𝐾)) |
| 71 | | elsni 4643 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑝 ∈ {1} → 𝑝 = 1) |
| 72 | 71 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑝 ∈ {1} → (𝑖 + 𝑝) = (𝑖 + 1)) |
| 73 | 72 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑝 ∈ {1} → ((𝑖 + 𝑝) ∈ (0...𝐾) ↔ (𝑖 + 1) ∈ (0...𝐾))) |
| 74 | 70, 73 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (0..^𝐾) → (𝑝 ∈ {1} → (𝑖 + 𝑝) ∈ (0...𝐾))) |
| 75 | | elfzonn0 13747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑖 ∈ (0..^𝐾) → 𝑖 ∈ ℕ0) |
| 76 | 75 | nn0cnd 12589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑖 ∈ (0..^𝐾) → 𝑖 ∈ ℂ) |
| 77 | 76 | addridd 11461 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 ∈ (0..^𝐾) → (𝑖 + 0) = 𝑖) |
| 78 | | elfzofz 13715 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 ∈ (0..^𝐾) → 𝑖 ∈ (0...𝐾)) |
| 79 | 77, 78 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑖 ∈ (0..^𝐾) → (𝑖 + 0) ∈ (0...𝐾)) |
| 80 | | elsni 4643 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑝 ∈ {0} → 𝑝 = 0) |
| 81 | 80 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑝 ∈ {0} → (𝑖 + 𝑝) = (𝑖 + 0)) |
| 82 | 81 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑝 ∈ {0} → ((𝑖 + 𝑝) ∈ (0...𝐾) ↔ (𝑖 + 0) ∈ (0...𝐾))) |
| 83 | 79, 82 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (0..^𝐾) → (𝑝 ∈ {0} → (𝑖 + 𝑝) ∈ (0...𝐾))) |
| 84 | 74, 83 | jaod 860 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 ∈ (0..^𝐾) → ((𝑝 ∈ {1} ∨ 𝑝 ∈ {0}) → (𝑖 + 𝑝) ∈ (0...𝐾))) |
| 85 | 69, 84 | biimtrid 242 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ (0..^𝐾) → (𝑝 ∈ ({1} ∪ {0}) → (𝑖 + 𝑝) ∈ (0...𝐾))) |
| 86 | 85 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 ∈ (0..^𝐾) ∧ 𝑝 ∈ ({1} ∪ {0})) → (𝑖 + 𝑝) ∈ (0...𝐾)) |
| 87 | 86 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑖 ∈ (0..^𝐾) ∧ 𝑝 ∈ ({1} ∪ {0}))) → (𝑖 + 𝑝) ∈ (0...𝐾)) |
| 88 | | xp1st 8046 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘𝑠) ∈ ((0..^𝐾) ↑m (1...𝑁))) |
| 89 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((1st ‘𝑠) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘𝑠):(1...𝑁)⟶(0..^𝐾)) |
| 90 | 88, 89 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘𝑠):(1...𝑁)⟶(0..^𝐾)) |
| 91 | 90 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑗 ∈ (0...𝑁)) → (1st ‘𝑠):(1...𝑁)⟶(0..^𝐾)) |
| 92 | | xp2nd 8047 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘𝑠) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 93 | | fvex 6919 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(2nd ‘𝑠) ∈ V |
| 94 | | f1oeq1 6836 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 = (2nd ‘𝑠) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘𝑠):(1...𝑁)–1-1-onto→(1...𝑁))) |
| 95 | 93, 94 | elab 3679 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((2nd ‘𝑠) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘𝑠):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 96 | 92, 95 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘𝑠):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 97 | | 1ex 11257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 1 ∈
V |
| 98 | 97 | fconst 6794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((2nd ‘𝑠) “ (1...𝑗)) × {1}):((2nd ‘𝑠) “ (1...𝑗))⟶{1} |
| 99 | | c0ex 11255 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 0 ∈
V |
| 100 | 99 | fconst 6794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}):((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁))⟶{0} |
| 101 | 98, 100 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((2nd ‘𝑠) “ (1...𝑗)) × {1}):((2nd ‘𝑠) “ (1...𝑗))⟶{1} ∧
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0}):((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁))⟶{0}) |
| 102 | | dff1o3 6854 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((2nd ‘𝑠):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘𝑠):(1...𝑁)–onto→(1...𝑁) ∧ Fun ◡(2nd ‘𝑠))) |
| 103 | | imain 6651 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (Fun
◡(2nd ‘𝑠) → ((2nd
‘𝑠) “
((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = (((2nd ‘𝑠) “ (1...𝑗)) ∩ ((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)))) |
| 104 | 102, 103 | simplbiim 504 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((2nd ‘𝑠):(1...𝑁)–1-1-onto→(1...𝑁) → ((2nd ‘𝑠) “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = (((2nd ‘𝑠) “ (1...𝑗)) ∩ ((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)))) |
| 105 | | elfznn0 13660 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℕ0) |
| 106 | 105 | nn0red 12588 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℝ) |
| 107 | 106 | ltp1d 12198 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 < (𝑗 + 1)) |
| 108 | | fzdisj 13591 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 < (𝑗 + 1) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅) |
| 109 | 107, 108 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0...𝑁) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅) |
| 110 | 109 | imaeq2d 6078 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (0...𝑁) → ((2nd ‘𝑠) “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ((2nd ‘𝑠) “
∅)) |
| 111 | | ima0 6095 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((2nd ‘𝑠) “ ∅) = ∅ |
| 112 | 110, 111 | eqtrdi 2793 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (0...𝑁) → ((2nd ‘𝑠) “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ∅) |
| 113 | 104, 112 | sylan9req 2798 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((2nd ‘𝑠):(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑗 ∈ (0...𝑁)) → (((2nd ‘𝑠) “ (1...𝑗)) ∩ ((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁))) = ∅) |
| 114 | | fun 6770 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((2nd ‘𝑠) “ (1...𝑗)) × {1}):((2nd ‘𝑠) “ (1...𝑗))⟶{1} ∧
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0}):((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁))⟶{0}) ∧ (((2nd
‘𝑠) “
(1...𝑗)) ∩
((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁))) = ∅) →
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})):(((2nd
‘𝑠) “
(1...𝑗)) ∪
((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)))⟶({1} ∪
{0})) |
| 115 | 101, 113,
114 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((2nd ‘𝑠):(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑗 ∈ (0...𝑁)) → ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) ×
{0})):(((2nd ‘𝑠) “ (1...𝑗)) ∪ ((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0})) |
| 116 | | nn0p1nn 12565 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
ℕ) |
| 117 | 105, 116 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈ ℕ) |
| 118 | | nnuz 12921 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ℕ =
(ℤ≥‘1) |
| 119 | 117, 118 | eleqtrdi 2851 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈
(ℤ≥‘1)) |
| 120 | | elfzuz3 13561 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ (0...𝑁) → 𝑁 ∈ (ℤ≥‘𝑗)) |
| 121 | | fzsplit2 13589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑗 + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝑗)) → (1...𝑁) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) |
| 122 | 119, 120,
121 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0...𝑁) → (1...𝑁) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) |
| 123 | 122 | imaeq2d 6078 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (0...𝑁) → ((2nd ‘𝑠) “ (1...𝑁)) = ((2nd ‘𝑠) “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁)))) |
| 124 | | imaundi 6169 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((2nd ‘𝑠) “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) = (((2nd ‘𝑠) “ (1...𝑗)) ∪ ((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁))) |
| 125 | 123, 124 | eqtr2di 2794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (0...𝑁) → (((2nd ‘𝑠) “ (1...𝑗)) ∪ ((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁))) = ((2nd ‘𝑠) “ (1...𝑁))) |
| 126 | | f1ofo 6855 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((2nd ‘𝑠):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘𝑠):(1...𝑁)–onto→(1...𝑁)) |
| 127 | | foima 6825 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((2nd ‘𝑠):(1...𝑁)–onto→(1...𝑁) → ((2nd ‘𝑠) “ (1...𝑁)) = (1...𝑁)) |
| 128 | 126, 127 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((2nd ‘𝑠):(1...𝑁)–1-1-onto→(1...𝑁) → ((2nd ‘𝑠) “ (1...𝑁)) = (1...𝑁)) |
| 129 | 125, 128 | sylan9eqr 2799 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((2nd ‘𝑠):(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑗 ∈ (0...𝑁)) → (((2nd ‘𝑠) “ (1...𝑗)) ∪ ((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁))) = (1...𝑁)) |
| 130 | 129 | feq2d 6722 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((2nd ‘𝑠):(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑗 ∈ (0...𝑁)) → (((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) ×
{0})):(((2nd ‘𝑠) “ (1...𝑗)) ∪ ((2nd ‘𝑠) “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0}) ↔
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0}))) |
| 131 | 115, 130 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((2nd ‘𝑠):(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑗 ∈ (0...𝑁)) → ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪
{0})) |
| 132 | 96, 131 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑗 ∈ (0...𝑁)) → ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪
{0})) |
| 133 | | fzfid 14014 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑗 ∈ (0...𝑁)) → (1...𝑁) ∈ Fin) |
| 134 | | inidm 4227 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) |
| 135 | 87, 91, 132, 133, 133, 134 | off 7715 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑗 ∈ (0...𝑁)) → ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)) |
| 136 | | ovex 7464 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑁)) × {0}))) ∈
V |
| 137 | | feq1 6716 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑝 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → (𝑝:(1...𝑁)⟶(0...𝐾) ↔ ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾))) |
| 138 | 137 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑝 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) ↔ (𝜑 ∧ ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)))) |
| 139 | | poimirlem28.1 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑝 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → 𝐵 = 𝐶) |
| 140 | 139 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑝 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → (𝐵 ∈ (0...𝑁) ↔ 𝐶 ∈ (0...𝑁))) |
| 141 | 138, 140 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 = ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))) → (((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) ↔ ((𝜑 ∧ ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)) → 𝐶 ∈ (0...𝑁)))) |
| 142 | | poimirlem28.2 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑝:(1...𝑁)⟶(0...𝐾)) → 𝐵 ∈ (0...𝑁)) |
| 143 | 136, 141,
142 | vtocl 3558 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑁)) × {0}))):(1...𝑁)⟶(0...𝐾)) → 𝐶 ∈ (0...𝑁)) |
| 144 | 135, 143 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ 𝑗 ∈ (0...𝑁))) → 𝐶 ∈ (0...𝑁)) |
| 145 | 144 | an12s 649 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) ∧ (𝜑 ∧ 𝑗 ∈ (0...𝑁))) → 𝐶 ∈ (0...𝑁)) |
| 146 | 145 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝐶 ∈ (0...𝑁))) |
| 147 | 61, 65, 68, 146 | vtoclgaf 3576 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈𝑇, 𝑈〉 ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...𝑁))) |
| 148 | 60, 147 | mpcom 38 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...𝑁)) |
| 149 | 39, 43, 148 | chvarfv 2240 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ (0...𝑁)) → ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...𝑁)) |
| 150 | | poimir.0 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 151 | 150 | nnnn0d 12587 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 152 | | nn0uz 12920 |
. . . . . . . . . . . . . . . . . . 19
⊢
ℕ0 = (ℤ≥‘0) |
| 153 | 151, 152 | eleqtrdi 2851 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
| 154 | | fzm1 13647 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈
(ℤ≥‘0) → (⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...𝑁) ↔ (⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) ∨ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = 𝑁))) |
| 155 | 153, 154 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...𝑁) ↔ (⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) ∨ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = 𝑁))) |
| 156 | 155 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ (0...𝑁)) → (⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...𝑁) ↔ (⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) ∨ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = 𝑁))) |
| 157 | 149, 156 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ (0...𝑁)) → (⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) ∨ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = 𝑁)) |
| 158 | 157 | ord 865 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ (0...𝑁)) → (¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) → ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = 𝑁)) |
| 159 | 36, 158 | mt3d 148 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ (0...𝑁)) → ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))) |
| 160 | 159 | adantrr 717 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) → ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))) |
| 161 | | fzfi 14013 |
. . . . . . . . . . . . . . 15
⊢
(0...(𝑁 − 1))
∈ Fin |
| 162 | 150 | nncnd 12282 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 163 | | 1cnd 11256 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 1 ∈
ℂ) |
| 164 | 162, 163,
163 | addsubd 11641 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑁 + 1) − 1) = ((𝑁 − 1) + 1)) |
| 165 | | hashfz0 14471 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ (♯‘(0...𝑁)) = (𝑁 + 1)) |
| 166 | 151, 165 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (♯‘(0...𝑁)) = (𝑁 + 1)) |
| 167 | 166 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((♯‘(0...𝑁)) − 1) = ((𝑁 + 1) −
1)) |
| 168 | | nnm1nn0 12567 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
| 169 | | hashfz0 14471 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 − 1) ∈
ℕ0 → (♯‘(0...(𝑁 − 1))) = ((𝑁 − 1) + 1)) |
| 170 | 150, 168,
169 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (♯‘(0...(𝑁 − 1))) = ((𝑁 − 1) +
1)) |
| 171 | 164, 167,
170 | 3eqtr4rd 2788 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (♯‘(0...(𝑁 − 1))) =
((♯‘(0...𝑁))
− 1)) |
| 172 | | hashdifsn 14453 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((0...𝑁) ∈ Fin
∧ 𝑡 ∈ (0...𝑁)) →
(♯‘((0...𝑁)
∖ {𝑡})) =
((♯‘(0...𝑁))
− 1)) |
| 173 | 8, 172 | mpan 690 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ (0...𝑁) → (♯‘((0...𝑁) ∖ {𝑡})) = ((♯‘(0...𝑁)) − 1)) |
| 174 | 173 | eqcomd 2743 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ (0...𝑁) → ((♯‘(0...𝑁)) − 1) =
(♯‘((0...𝑁)
∖ {𝑡}))) |
| 175 | 171, 174 | sylan9eq 2797 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ (0...𝑁)) → (♯‘(0...(𝑁 − 1))) =
(♯‘((0...𝑁)
∖ {𝑡}))) |
| 176 | | diffi 9215 |
. . . . . . . . . . . . . . . . . 18
⊢
((0...𝑁) ∈ Fin
→ ((0...𝑁) ∖
{𝑡}) ∈
Fin) |
| 177 | 8, 176 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
((0...𝑁) ∖
{𝑡}) ∈
Fin |
| 178 | | hashen 14386 |
. . . . . . . . . . . . . . . . 17
⊢
(((0...(𝑁 −
1)) ∈ Fin ∧ ((0...𝑁) ∖ {𝑡}) ∈ Fin) →
((♯‘(0...(𝑁
− 1))) = (♯‘((0...𝑁) ∖ {𝑡})) ↔ (0...(𝑁 − 1)) ≈ ((0...𝑁) ∖ {𝑡}))) |
| 179 | 161, 177,
178 | mp2an 692 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘(0...(𝑁 − 1))) = (♯‘((0...𝑁) ∖ {𝑡})) ↔ (0...(𝑁 − 1)) ≈ ((0...𝑁) ∖ {𝑡})) |
| 180 | 175, 179 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ (0...𝑁)) → (0...(𝑁 − 1)) ≈ ((0...𝑁) ∖ {𝑡})) |
| 181 | | phpreu 37611 |
. . . . . . . . . . . . . . 15
⊢
(((0...(𝑁 −
1)) ∈ Fin ∧ (0...(𝑁 − 1)) ≈ ((0...𝑁) ∖ {𝑡})) → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃!𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 182 | 161, 180,
181 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ (0...𝑁)) → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃!𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 183 | 182 | biimpd 229 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ (0...𝑁)) → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → ∀𝑖 ∈ (0...(𝑁 − 1))∃!𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 184 | 183 | impr 454 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) → ∀𝑖 ∈ (0...(𝑁 − 1))∃!𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 185 | | nfv 1914 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑧 𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 |
| 186 | | nfcsb1v 3923 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑗⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 |
| 187 | 186 | nfeq2 2923 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗 𝑖 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 |
| 188 | | csbeq1a 3913 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑧 → ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 189 | 188 | eqeq2d 2748 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑧 → (𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ 𝑖 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 190 | 185, 187,
189 | cbvreuw 3410 |
. . . . . . . . . . . . . 14
⊢
(∃!𝑗 ∈
((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∃!𝑧 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 191 | | eqeq1 2741 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → (𝑖 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 192 | 191 | reubidv 3398 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → (∃!𝑧 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∃!𝑧 ∈ ((0...𝑁) ∖ {𝑡})⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 193 | 190, 192 | bitrid 283 |
. . . . . . . . . . . . 13
⊢ (𝑖 = ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → (∃!𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∃!𝑧 ∈ ((0...𝑁) ∖ {𝑡})⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 194 | 193 | rspcv 3618 |
. . . . . . . . . . . 12
⊢
(⦋𝑡 /
𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) → (∀𝑖 ∈ (0...(𝑁 − 1))∃!𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → ∃!𝑧 ∈ ((0...𝑁) ∖ {𝑡})⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 195 | 160, 184,
194 | sylc 65 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) → ∃!𝑧 ∈ ((0...𝑁) ∖ {𝑡})⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 196 | | an32 646 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ↔ ((𝑡 ∈ (0...𝑁) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 197 | 196 | biimpi 216 |
. . . . . . . . . . . . . . 15
⊢ (((𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) → ((𝑡 ∈ (0...𝑁) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 198 | 197 | adantll 714 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) → ((𝑡 ∈ (0...𝑁) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 199 | | eqeq2 2749 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(⦋𝑡 /
𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → (𝑖 = ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ 𝑖 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 200 | | rexsns 4671 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∃𝑗 ∈
{𝑡}𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ [𝑡 / 𝑗]𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 201 | 29 | nfeq2 2923 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑗 𝑖 = ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 |
| 202 | 31 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = 𝑡 → (𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ 𝑖 = ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 203 | 201, 202 | sbciegf 3827 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 ∈ V → ([𝑡 / 𝑗]𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ 𝑖 = ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 204 | 7, 203 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
([𝑡 / 𝑗]𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ 𝑖 = ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 205 | 200, 204 | bitri 275 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃𝑗 ∈
{𝑡}𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ 𝑖 = ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 206 | | rexsns 4671 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∃𝑗 ∈
{𝑧}𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ [𝑧 / 𝑗]𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 207 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑧 ∈ V |
| 208 | 187, 189 | sbciegf 3827 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 ∈ V → ([𝑧 / 𝑗]𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ 𝑖 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 209 | 207, 208 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
([𝑧 / 𝑗]𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ 𝑖 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 210 | 206, 209 | bitri 275 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃𝑗 ∈
{𝑧}𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ 𝑖 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 211 | 199, 205,
210 | 3bitr4g 314 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(⦋𝑡 /
𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → (∃𝑗 ∈ {𝑡}𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ {𝑧}𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 212 | 211 | orbi1d 917 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(⦋𝑡 /
𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → ((∃𝑗 ∈ {𝑡}𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∨ ∃𝑗 ∈ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ↔ (∃𝑗 ∈ {𝑧}𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∨ ∃𝑗 ∈ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶))) |
| 213 | | rexun 4196 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑗 ∈
({𝑡} ∪ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧}))𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ (∃𝑗 ∈ {𝑡}𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∨ ∃𝑗 ∈ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 214 | | rexun 4196 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑗 ∈
({𝑧} ∪ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧}))𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ (∃𝑗 ∈ {𝑧}𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∨ ∃𝑗 ∈ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 215 | 212, 213,
214 | 3bitr4g 314 |
. . . . . . . . . . . . . . . . . . 19
⊢
(⦋𝑡 /
𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → (∃𝑗 ∈ ({𝑡} ∪ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧}))𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ ({𝑧} ∪ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧}))𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 216 | 215 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑡 ∈ (0...𝑁) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → (∃𝑗 ∈ ({𝑡} ∪ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧}))𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ ({𝑧} ∪ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧}))𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 217 | | eldifsni 4790 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ ((0...𝑁) ∖ {𝑡}) → 𝑧 ≠ 𝑡) |
| 218 | 217 | necomd 2996 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ ((0...𝑁) ∖ {𝑡}) → 𝑡 ≠ 𝑧) |
| 219 | | dif32 4302 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((0...𝑁) ∖
{𝑡}) ∖ {𝑧}) = (((0...𝑁) ∖ {𝑧}) ∖ {𝑡}) |
| 220 | 219 | uneq2i 4165 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({𝑡} ∪ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧})) = ({𝑡} ∪ (((0...𝑁) ∖ {𝑧}) ∖ {𝑡})) |
| 221 | | snssi 4808 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 ∈ ((0...𝑁) ∖ {𝑧}) → {𝑡} ⊆ ((0...𝑁) ∖ {𝑧})) |
| 222 | | eldifsn 4786 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 ∈ ((0...𝑁) ∖ {𝑧}) ↔ (𝑡 ∈ (0...𝑁) ∧ 𝑡 ≠ 𝑧)) |
| 223 | | undif 4482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ({𝑡} ⊆ ((0...𝑁) ∖ {𝑧}) ↔ ({𝑡} ∪ (((0...𝑁) ∖ {𝑧}) ∖ {𝑡})) = ((0...𝑁) ∖ {𝑧})) |
| 224 | 221, 222,
223 | 3imtr3i 291 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑡 ∈ (0...𝑁) ∧ 𝑡 ≠ 𝑧) → ({𝑡} ∪ (((0...𝑁) ∖ {𝑧}) ∖ {𝑡})) = ((0...𝑁) ∖ {𝑧})) |
| 225 | 220, 224 | eqtrid 2789 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑡 ∈ (0...𝑁) ∧ 𝑡 ≠ 𝑧) → ({𝑡} ∪ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧})) = ((0...𝑁) ∖ {𝑧})) |
| 226 | 218, 225 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑡 ∈ (0...𝑁) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) → ({𝑡} ∪ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧})) = ((0...𝑁) ∖ {𝑧})) |
| 227 | 226 | rexeqdv 3327 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑡 ∈ (0...𝑁) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) → (∃𝑗 ∈ ({𝑡} ∪ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧}))𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 228 | 227 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑡 ∈ (0...𝑁) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → (∃𝑗 ∈ ({𝑡} ∪ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧}))𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 229 | | snssi 4808 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ ((0...𝑁) ∖ {𝑡}) → {𝑧} ⊆ ((0...𝑁) ∖ {𝑡})) |
| 230 | | undif 4482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑧} ⊆ ((0...𝑁) ∖ {𝑡}) ↔ ({𝑧} ∪ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧})) = ((0...𝑁) ∖ {𝑡})) |
| 231 | 229, 230 | sylib 218 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ ((0...𝑁) ∖ {𝑡}) → ({𝑧} ∪ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧})) = ((0...𝑁) ∖ {𝑡})) |
| 232 | 231 | rexeqdv 3327 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ((0...𝑁) ∖ {𝑡}) → (∃𝑗 ∈ ({𝑧} ∪ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧}))𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 233 | 232 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑡 ∈ (0...𝑁) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → (∃𝑗 ∈ ({𝑧} ∪ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧}))𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 234 | 216, 228,
233 | 3bitr3d 309 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑡 ∈ (0...𝑁) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → (∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 235 | 234 | ralbidv 3178 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑡 ∈ (0...𝑁) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 236 | 235 | biimpar 477 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑡 ∈ (0...𝑁) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 237 | 236 | an32s 652 |
. . . . . . . . . . . . . 14
⊢ ((((𝑡 ∈ (0...𝑁) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 238 | 198, 237 | sylan 580 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 239 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → 𝑡 ∈ (0...𝑁)) |
| 240 | 239 | anim2i 617 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) → (𝜑 ∧ 𝑡 ∈ (0...𝑁))) |
| 241 | | necom 2994 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 ≠ 𝑡 ↔ 𝑡 ≠ 𝑧) |
| 242 | 241 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 ≠ 𝑡 → 𝑡 ≠ 𝑧) |
| 243 | 242 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑧 ∈ (0...𝑁) ∧ 𝑧 ≠ 𝑡) → 𝑡 ≠ 𝑧) |
| 244 | 243 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑡 ∈ (0...𝑁) ∧ (𝑧 ∈ (0...𝑁) ∧ 𝑧 ≠ 𝑡)) → (𝑡 ∈ (0...𝑁) ∧ 𝑡 ≠ 𝑧)) |
| 245 | | eldifsn 4786 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧 ∈ ((0...𝑁) ∖ {𝑡}) ↔ (𝑧 ∈ (0...𝑁) ∧ 𝑧 ≠ 𝑡)) |
| 246 | 245 | anbi2i 623 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑡 ∈ (0...𝑁) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ↔ (𝑡 ∈ (0...𝑁) ∧ (𝑧 ∈ (0...𝑁) ∧ 𝑧 ≠ 𝑡))) |
| 247 | 244, 246,
222 | 3imtr4i 292 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑡 ∈ (0...𝑁) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) → 𝑡 ∈ ((0...𝑁) ∖ {𝑧})) |
| 248 | 247 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑡 ∈ (0...𝑁)) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) → 𝑡 ∈ ((0...𝑁) ∖ {𝑧})) |
| 249 | 248 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑡 ∈ (0...𝑁)) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → 𝑡 ∈ ((0...𝑁) ∖ {𝑧})) |
| 250 | 29 | nfel1 2922 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑗⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) |
| 251 | 37, 250 | nfim 1896 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑗((𝜑 ∧ 𝑡 ∈ (0...𝑁)) → ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))) |
| 252 | 31 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 = 𝑡 → (⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) ↔ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)))) |
| 253 | 41, 252 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = 𝑡 → (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))) ↔ ((𝜑 ∧ 𝑡 ∈ (0...𝑁)) → ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))))) |
| 254 | 26 | necomd 2996 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ≠ 𝑁) |
| 255 | 254 | neneqd 2945 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ¬ ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = 𝑁) |
| 256 | | fzm1 13647 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑁 ∈
(ℤ≥‘0) → (⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...𝑁) ↔ (⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) ∨ ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = 𝑁))) |
| 257 | 153, 256 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 →
(⦋〈𝑇,
𝑈〉 / 𝑠⦌𝐶 ∈ (0...𝑁) ↔ (⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) ∨ ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = 𝑁))) |
| 258 | 257 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...𝑁) ↔ (⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) ∨ ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = 𝑁))) |
| 259 | 148, 258 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) ∨ ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = 𝑁)) |
| 260 | 259 | ord 865 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (¬ ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) →
⦋〈𝑇,
𝑈〉 / 𝑠⦌𝐶 = 𝑁)) |
| 261 | 255, 260 | mt3d 148 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))) |
| 262 | 251, 253,
261 | chvarfv 2240 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑡 ∈ (0...𝑁)) → ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))) |
| 263 | 262 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑡 ∈ (0...𝑁)) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1))) |
| 264 | | eldifi 4131 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 ∈ ((0...𝑁) ∖ {𝑡}) → 𝑧 ∈ (0...𝑁)) |
| 265 | | eleq1w 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑡 = 𝑧 → (𝑡 ∈ (0...𝑁) ↔ 𝑧 ∈ (0...𝑁))) |
| 266 | 265 | anbi2d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑡 = 𝑧 → ((𝜑 ∧ 𝑡 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑧 ∈ (0...𝑁)))) |
| 267 | | sneq 4636 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑡 = 𝑧 → {𝑡} = {𝑧}) |
| 268 | 267 | difeq2d 4126 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑡 = 𝑧 → ((0...𝑁) ∖ {𝑡}) = ((0...𝑁) ∖ {𝑧})) |
| 269 | 268 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑡 = 𝑧 → ((0...(𝑁 − 1)) ≈ ((0...𝑁) ∖ {𝑡}) ↔ (0...(𝑁 − 1)) ≈ ((0...𝑁) ∖ {𝑧}))) |
| 270 | 266, 269 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑡 = 𝑧 → (((𝜑 ∧ 𝑡 ∈ (0...𝑁)) → (0...(𝑁 − 1)) ≈ ((0...𝑁) ∖ {𝑡})) ↔ ((𝜑 ∧ 𝑧 ∈ (0...𝑁)) → (0...(𝑁 − 1)) ≈ ((0...𝑁) ∖ {𝑧})))) |
| 271 | 270, 180 | chvarvv 1998 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑧 ∈ (0...𝑁)) → (0...(𝑁 − 1)) ≈ ((0...𝑁) ∖ {𝑧})) |
| 272 | 264, 271 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) → (0...(𝑁 − 1)) ≈ ((0...𝑁) ∖ {𝑧})) |
| 273 | 272 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑡 ∈ (0...𝑁)) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) → (0...(𝑁 − 1)) ≈ ((0...𝑁) ∖ {𝑧})) |
| 274 | | phpreu 37611 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((0...(𝑁 −
1)) ∈ Fin ∧ (0...(𝑁 − 1)) ≈ ((0...𝑁) ∖ {𝑧})) → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃!𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 275 | 161, 274 | mpan 690 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((0...(𝑁 − 1))
≈ ((0...𝑁) ∖
{𝑧}) → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃!𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 276 | 275 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((0...(𝑁 −
1)) ≈ ((0...𝑁)
∖ {𝑧}) ∧
∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∀𝑖 ∈ (0...(𝑁 − 1))∃!𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 277 | 273, 276 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑡 ∈ (0...𝑁)) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∀𝑖 ∈ (0...(𝑁 − 1))∃!𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 278 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 = ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → (𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 279 | 278 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 = ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∧ 𝑗 ∈ ((0...𝑁) ∖ {𝑧})) → (𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 280 | 201, 279 | reubida 3407 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 = ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → (∃!𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∃!𝑗 ∈ ((0...𝑁) ∖ {𝑧})⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 281 | 280 | rspcv 3618 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(⦋𝑡 /
𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) → (∀𝑖 ∈ (0...(𝑁 − 1))∃!𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → ∃!𝑗 ∈ ((0...𝑁) ∖ {𝑧})⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 282 | 263, 277,
281 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑡 ∈ (0...𝑁)) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∃!𝑗 ∈ ((0...𝑁) ∖ {𝑧})⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 283 | | reurmo 3383 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃!𝑗 ∈
((0...𝑁) ∖ {𝑧})⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → ∃*𝑗 ∈ ((0...𝑁) ∖ {𝑧})⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 284 | 282, 283 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑡 ∈ (0...𝑁)) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∃*𝑗 ∈ ((0...𝑁) ∖ {𝑧})⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 285 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑖⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 |
| 286 | 285 | rmo3 3889 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃*𝑗 ∈
((0...𝑁) ∖ {𝑧})⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∀𝑗 ∈ ((0...𝑁) ∖ {𝑧})∀𝑖 ∈ ((0...𝑁) ∖ {𝑧})((⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∧ [𝑖 / 𝑗]⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → 𝑗 = 𝑖)) |
| 287 | 284, 286 | sylib 218 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑡 ∈ (0...𝑁)) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∀𝑗 ∈ ((0...𝑁) ∖ {𝑧})∀𝑖 ∈ ((0...𝑁) ∖ {𝑧})((⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∧ [𝑖 / 𝑗]⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → 𝑗 = 𝑖)) |
| 288 | | equcomi 2016 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 = 𝑡 → 𝑡 = 𝑖) |
| 289 | 288 | csbeq1d 3903 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 = 𝑡 → ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑖 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 290 | | sbsbc 3792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ([𝑖 / 𝑗]⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ [𝑖 / 𝑗]⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 291 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝑖 ∈ V |
| 292 | | sbceqg 4412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 ∈ V → ([𝑖 / 𝑗]⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ⦋𝑖 / 𝑗⦌⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑖 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 293 | 29 | csbconstgf 3917 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑖 ∈ V →
⦋𝑖 / 𝑗⦌⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 294 | 293 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 ∈ V →
(⦋𝑖 / 𝑗⦌⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑖 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑖 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 295 | 292, 294 | bitrd 279 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑖 ∈ V → ([𝑖 / 𝑗]⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑖 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 296 | 291, 295 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
([𝑖 / 𝑗]⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑖 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 297 | 290, 296 | bitri 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ([𝑖 / 𝑗]⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑖 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 298 | 289, 297 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 = 𝑡 → [𝑖 / 𝑗]⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 299 | 298 | biantrud 531 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 = 𝑡 → (⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ (⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∧ [𝑖 / 𝑗]⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶))) |
| 300 | 299 | bicomd 223 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑡 → ((⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∧ [𝑖 / 𝑗]⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ↔ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 301 | | eqeq2 2749 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = 𝑡 → (𝑗 = 𝑖 ↔ 𝑗 = 𝑡)) |
| 302 | 300, 301 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑡 → (((⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∧ [𝑖 / 𝑗]⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → 𝑗 = 𝑖) ↔ (⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → 𝑗 = 𝑡))) |
| 303 | 302 | rspcv 3618 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ ((0...𝑁) ∖ {𝑧}) → (∀𝑖 ∈ ((0...𝑁) ∖ {𝑧})((⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∧ [𝑖 / 𝑗]⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → 𝑗 = 𝑖) → (⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → 𝑗 = 𝑡))) |
| 304 | 303 | ralimdv 3169 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 ∈ ((0...𝑁) ∖ {𝑧}) → (∀𝑗 ∈ ((0...𝑁) ∖ {𝑧})∀𝑖 ∈ ((0...𝑁) ∖ {𝑧})((⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∧ [𝑖 / 𝑗]⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → 𝑗 = 𝑖) → ∀𝑗 ∈ ((0...𝑁) ∖ {𝑧})(⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → 𝑗 = 𝑡))) |
| 305 | 249, 287,
304 | sylc 65 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑡 ∈ (0...𝑁)) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∀𝑗 ∈ ((0...𝑁) ∖ {𝑧})(⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → 𝑗 = 𝑡)) |
| 306 | | dif32 4302 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((0...𝑁) ∖
{𝑧}) ∖ {𝑡}) = (((0...𝑁) ∖ {𝑡}) ∖ {𝑧}) |
| 307 | 306 | eleq2i 2833 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (((0...𝑁) ∖ {𝑧}) ∖ {𝑡}) ↔ 𝑗 ∈ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧})) |
| 308 | | eldifsn 4786 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (((0...𝑁) ∖ {𝑧}) ∖ {𝑡}) ↔ (𝑗 ∈ ((0...𝑁) ∖ {𝑧}) ∧ 𝑗 ≠ 𝑡)) |
| 309 | | eldifsn 4786 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (((0...𝑁) ∖ {𝑡}) ∖ {𝑧}) ↔ (𝑗 ∈ ((0...𝑁) ∖ {𝑡}) ∧ 𝑗 ≠ 𝑧)) |
| 310 | 307, 308,
309 | 3bitr3ri 302 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑗 ∈ ((0...𝑁) ∖ {𝑡}) ∧ 𝑗 ≠ 𝑧) ↔ (𝑗 ∈ ((0...𝑁) ∖ {𝑧}) ∧ 𝑗 ≠ 𝑡)) |
| 311 | 310 | imbi1i 349 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑗 ∈ ((0...𝑁) ∖ {𝑡}) ∧ 𝑗 ≠ 𝑧) → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ↔ ((𝑗 ∈ ((0...𝑁) ∖ {𝑧}) ∧ 𝑗 ≠ 𝑡) → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 312 | | impexp 450 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑗 ∈ ((0...𝑁) ∖ {𝑡}) ∧ 𝑗 ≠ 𝑧) → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ↔ (𝑗 ∈ ((0...𝑁) ∖ {𝑡}) → (𝑗 ≠ 𝑧 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶))) |
| 313 | | impexp 450 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑗 ∈ ((0...𝑁) ∖ {𝑧}) ∧ 𝑗 ≠ 𝑡) → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ↔ (𝑗 ∈ ((0...𝑁) ∖ {𝑧}) → (𝑗 ≠ 𝑡 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶))) |
| 314 | 311, 312,
313 | 3bitr3ri 302 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑗 ∈ ((0...𝑁) ∖ {𝑧}) → (𝑗 ≠ 𝑡 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) ↔ (𝑗 ∈ ((0...𝑁) ∖ {𝑡}) → (𝑗 ≠ 𝑧 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶))) |
| 315 | 314 | albii 1819 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑗(𝑗 ∈ ((0...𝑁) ∖ {𝑧}) → (𝑗 ≠ 𝑡 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) ↔ ∀𝑗(𝑗 ∈ ((0...𝑁) ∖ {𝑡}) → (𝑗 ≠ 𝑧 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶))) |
| 316 | | con34b 316 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((⦋𝑡 /
𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → 𝑗 = 𝑡) ↔ (¬ 𝑗 = 𝑡 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 317 | | df-ne 2941 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ≠ 𝑡 ↔ ¬ 𝑗 = 𝑡) |
| 318 | 317 | imbi1i 349 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑗 ≠ 𝑡 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ↔ (¬ 𝑗 = 𝑡 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 319 | 316, 318 | bitr4i 278 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((⦋𝑡 /
𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → 𝑗 = 𝑡) ↔ (𝑗 ≠ 𝑡 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 320 | 319 | ralbii 3093 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑗 ∈
((0...𝑁) ∖ {𝑧})(⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → 𝑗 = 𝑡) ↔ ∀𝑗 ∈ ((0...𝑁) ∖ {𝑧})(𝑗 ≠ 𝑡 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 321 | | df-ral 3062 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑗 ∈
((0...𝑁) ∖ {𝑧})(𝑗 ≠ 𝑡 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ↔ ∀𝑗(𝑗 ∈ ((0...𝑁) ∖ {𝑧}) → (𝑗 ≠ 𝑡 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶))) |
| 322 | 320, 321 | bitri 275 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑗 ∈
((0...𝑁) ∖ {𝑧})(⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → 𝑗 = 𝑡) ↔ ∀𝑗(𝑗 ∈ ((0...𝑁) ∖ {𝑧}) → (𝑗 ≠ 𝑡 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶))) |
| 323 | | df-ral 3062 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑗 ∈
((0...𝑁) ∖ {𝑡})(𝑗 ≠ 𝑧 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ↔ ∀𝑗(𝑗 ∈ ((0...𝑁) ∖ {𝑡}) → (𝑗 ≠ 𝑧 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶))) |
| 324 | 315, 322,
323 | 3bitr4i 303 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑗 ∈
((0...𝑁) ∖ {𝑧})(⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → 𝑗 = 𝑡) ↔ ∀𝑗 ∈ ((0...𝑁) ∖ {𝑡})(𝑗 ≠ 𝑧 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 325 | 305, 324 | sylib 218 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑡 ∈ (0...𝑁)) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∀𝑗 ∈ ((0...𝑁) ∖ {𝑡})(𝑗 ≠ 𝑧 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 326 | | df-ne 2941 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ≠ 𝑧 ↔ ¬ 𝑗 = 𝑧) |
| 327 | 326 | imbi1i 349 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑗 ≠ 𝑧 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ↔ (¬ 𝑗 = 𝑧 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 328 | | con34b 316 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((⦋𝑡 /
𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → 𝑗 = 𝑧) ↔ (¬ 𝑗 = 𝑧 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 329 | 327, 328 | bitr4i 278 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ≠ 𝑧 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ↔ (⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → 𝑗 = 𝑧)) |
| 330 | | ancr 546 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((⦋𝑡 /
𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → 𝑗 = 𝑧) → (⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → (𝑗 = 𝑧 ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶))) |
| 331 | 329, 330 | sylbi 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ≠ 𝑧 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → (⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → (𝑗 = 𝑧 ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶))) |
| 332 | 331 | ralimi 3083 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑗 ∈
((0...𝑁) ∖ {𝑡})(𝑗 ≠ 𝑧 → ¬ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∀𝑗 ∈ ((0...𝑁) ∖ {𝑡})(⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → (𝑗 = 𝑧 ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶))) |
| 333 | 325, 332 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑡 ∈ (0...𝑁)) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∀𝑗 ∈ ((0...𝑁) ∖ {𝑡})(⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → (𝑗 = 𝑧 ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶))) |
| 334 | 240, 333 | sylanl1 680 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∀𝑗 ∈ ((0...𝑁) ∖ {𝑡})(⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → (𝑗 = 𝑧 ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶))) |
| 335 | 201, 278 | rexbid 3274 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → (∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 336 | 335 | rspcva 3620 |
. . . . . . . . . . . . . . . . . . 19
⊢
((⦋𝑡 /
𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ∈ (0...(𝑁 − 1)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 337 | 262, 336 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑡 ∈ (0...𝑁)) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 338 | 337 | anasss 466 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) → ∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 339 | 338 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 340 | | rexim 3087 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑗 ∈
((0...𝑁) ∖ {𝑡})(⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → (𝑗 = 𝑧 ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) → (∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 → ∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})(𝑗 = 𝑧 ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶))) |
| 341 | 334, 339,
340 | sylc 65 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})(𝑗 = 𝑧 ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 342 | | rexex 3076 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑗 ∈
((0...𝑁) ∖ {𝑡})(𝑗 = 𝑧 ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∃𝑗(𝑗 = 𝑧 ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 343 | 341, 342 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ∃𝑗(𝑗 = 𝑧 ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 344 | 29, 186 | nfeq 2919 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 |
| 345 | 188 | eqeq2d 2748 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑧 → (⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 346 | 344, 345 | equsexv 2268 |
. . . . . . . . . . . . . 14
⊢
(∃𝑗(𝑗 = 𝑧 ∧ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ↔ ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 347 | 343, 346 | sylib 218 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) → ⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 348 | 238, 347 | impbida 801 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) ∧ 𝑧 ∈ ((0...𝑁) ∖ {𝑡})) → (⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 349 | 348 | reubidva 3396 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) → (∃!𝑧 ∈ ((0...𝑁) ∖ {𝑡})⦋𝑡 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 = ⦋𝑧 / 𝑗⦌⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∃!𝑧 ∈ ((0...𝑁) ∖ {𝑡})∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 350 | 195, 349 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) → ∃!𝑧 ∈ ((0...𝑁) ∖ {𝑡})∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) |
| 351 | | an32 646 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 ∈ (0...𝑁) ∧ 𝑧 ≠ 𝑡) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ↔ ((𝑧 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ∧ 𝑧 ≠ 𝑡)) |
| 352 | 245 | anbi1i 624 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ((0...𝑁) ∖ {𝑡}) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ↔ ((𝑧 ∈ (0...𝑁) ∧ 𝑧 ≠ 𝑡) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 353 | | sneq 4636 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑧 → {𝑦} = {𝑧}) |
| 354 | 353 | difeq2d 4126 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑧 → ((0...𝑁) ∖ {𝑦}) = ((0...𝑁) ∖ {𝑧})) |
| 355 | 354 | rexeqdv 3327 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑧 → (∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 356 | 355 | ralbidv 3178 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑧 → (∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 357 | 356 | elrab 3692 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ↔ (𝑧 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 358 | 357 | anbi1i 624 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∧ 𝑧 ≠ 𝑡) ↔ ((𝑧 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ∧ 𝑧 ≠ 𝑡)) |
| 359 | 351, 352,
358 | 3bitr4i 303 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ((0...𝑁) ∖ {𝑡}) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ↔ (𝑧 ∈ {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∧ 𝑧 ≠ 𝑡)) |
| 360 | | eldifsn 4786 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡}) ↔ (𝑧 ∈ {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∧ 𝑧 ≠ 𝑡)) |
| 361 | 359, 360 | bitr4i 278 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ((0...𝑁) ∖ {𝑡}) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ↔ 𝑧 ∈ ({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡})) |
| 362 | 361 | eubii 2585 |
. . . . . . . . . . 11
⊢
(∃!𝑧(𝑧 ∈ ((0...𝑁) ∖ {𝑡}) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶) ↔ ∃!𝑧 𝑧 ∈ ({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡})) |
| 363 | | df-reu 3381 |
. . . . . . . . . . 11
⊢
(∃!𝑧 ∈
((0...𝑁) ∖ {𝑡})∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ ∃!𝑧(𝑧 ∈ ((0...𝑁) ∖ {𝑡}) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) |
| 364 | | euhash1 14459 |
. . . . . . . . . . . 12
⊢ (({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡}) ∈ Fin → ((♯‘({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡})) = 1 ↔ ∃!𝑧 𝑧 ∈ ({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡}))) |
| 365 | 12, 364 | ax-mp 5 |
. . . . . . . . . . 11
⊢
((♯‘({𝑦
∈ (0...𝑁) ∣
∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡})) = 1 ↔ ∃!𝑧 𝑧 ∈ ({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡})) |
| 366 | 362, 363,
365 | 3bitr4i 303 |
. . . . . . . . . 10
⊢
(∃!𝑧 ∈
((0...𝑁) ∖ {𝑡})∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑧})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶 ↔ (♯‘({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡})) = 1) |
| 367 | 350, 366 | sylib 218 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑡})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶)) → (♯‘({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡})) = 1) |
| 368 | 25, 367 | sylan2b 594 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶}) → (♯‘({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡})) = 1) |
| 369 | 368 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶}) → ((♯‘({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} ∖ {𝑡})) + 1) = (1 + 1)) |
| 370 | 20, 369 | eqtr3d 2779 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶}) → (♯‘{𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶}) = (1 + 1)) |
| 371 | 6, 370 | breqtrrid 5181 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶}) → 2 ∥ (♯‘{𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶})) |
| 372 | 371 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} → 2 ∥ (♯‘{𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶}))) |
| 373 | 372 | exlimdv 1933 |
. . 3
⊢ (𝜑 → (∃𝑡 𝑡 ∈ {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} → 2 ∥ (♯‘{𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶}))) |
| 374 | 1, 373 | biimtrid 242 |
. 2
⊢ (𝜑 → (¬ {𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} = ∅ → 2 ∥
(♯‘{𝑦 ∈
(0...𝑁) ∣
∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶}))) |
| 375 | | dvds0 16309 |
. . . . 5
⊢ (2 ∈
ℤ → 2 ∥ 0) |
| 376 | 2, 375 | ax-mp 5 |
. . . 4
⊢ 2 ∥
0 |
| 377 | | hash0 14406 |
. . . 4
⊢
(♯‘∅) = 0 |
| 378 | 376, 377 | breqtrri 5170 |
. . 3
⊢ 2 ∥
(♯‘∅) |
| 379 | | fveq2 6906 |
. . 3
⊢ ({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} = ∅ → (♯‘{𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶}) =
(♯‘∅)) |
| 380 | 378, 379 | breqtrrid 5181 |
. 2
⊢ ({𝑦 ∈ (0...𝑁) ∣ ∀𝑖 ∈ (0...(𝑁 − 1))∃𝑗 ∈ ((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶} = ∅ → 2 ∥
(♯‘{𝑦 ∈
(0...𝑁) ∣
∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶})) |
| 381 | 374, 380 | pm2.61d2 181 |
1
⊢ (𝜑 → 2 ∥
(♯‘{𝑦 ∈
(0...𝑁) ∣
∀𝑖 ∈
(0...(𝑁 −
1))∃𝑗 ∈
((0...𝑁) ∖ {𝑦})𝑖 = ⦋〈𝑇, 𝑈〉 / 𝑠⦌𝐶})) |