Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-opelid Structured version   Visualization version   GIF version

Theorem bj-opelid 37122
Description: Characterization of the ordered pair elements of the identity relation when the intersection of their components are sets. Note that the antecedent is more general than either component being a set. (Contributed by BJ, 29-Mar-2020.)
Assertion
Ref Expression
bj-opelid ((𝐴𝐵) ∈ 𝑉 → (⟨𝐴, 𝐵⟩ ∈ I ↔ 𝐴 = 𝐵))

Proof of Theorem bj-opelid
StepHypRef Expression
1 bj-inexeqex 37120 . . 3 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21ex 412 . 2 ((𝐴𝐵) ∈ 𝑉 → (𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
3 bj-opelidb 37118 . . 3 (⟨𝐴, 𝐵⟩ ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))
4 simpr 484 . . . 4 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
5 ancr 546 . . . 4 ((𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (𝐴 = 𝐵 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)))
64, 5impbid2 226 . . 3 ((𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) ↔ 𝐴 = 𝐵))
73, 6bitrid 283 . 2 ((𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐴, 𝐵⟩ ∈ I ↔ 𝐴 = 𝐵))
82, 7syl 17 1 ((𝐴𝐵) ∈ 𝑉 → (⟨𝐴, 𝐵⟩ ∈ I ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975  cop 4654   I cid 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229  df-id 5593
This theorem is referenced by:  bj-ideqg  37123  bj-opelidres  37127  bj-opelidb1ALT  37132  bj-elid4  37134
  Copyright terms: Public domain W3C validator