Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-opelid Structured version   Visualization version   GIF version

Theorem bj-opelid 37200
Description: Characterization of the ordered pair elements of the identity relation when the intersection of their components are sets. Note that the antecedent is more general than either component being a set. (Contributed by BJ, 29-Mar-2020.)
Assertion
Ref Expression
bj-opelid ((𝐴𝐵) ∈ 𝑉 → (⟨𝐴, 𝐵⟩ ∈ I ↔ 𝐴 = 𝐵))

Proof of Theorem bj-opelid
StepHypRef Expression
1 bj-inexeqex 37198 . . 3 (((𝐴𝐵) ∈ 𝑉𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21ex 412 . 2 ((𝐴𝐵) ∈ 𝑉 → (𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
3 bj-opelidb 37196 . . 3 (⟨𝐴, 𝐵⟩ ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))
4 simpr 484 . . . 4 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
5 ancr 546 . . . 4 ((𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (𝐴 = 𝐵 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)))
64, 5impbid2 226 . . 3 ((𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) ↔ 𝐴 = 𝐵))
73, 6bitrid 283 . 2 ((𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (⟨𝐴, 𝐵⟩ ∈ I ↔ 𝐴 = 𝐵))
82, 7syl 17 1 ((𝐴𝐵) ∈ 𝑉 → (⟨𝐴, 𝐵⟩ ∈ I ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cin 3896  cop 4579   I cid 5508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-opab 5152  df-id 5509
This theorem is referenced by:  bj-ideqg  37201  bj-opelidres  37205  bj-opelidb1ALT  37210  bj-elid4  37212
  Copyright terms: Public domain W3C validator