Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opelid | Structured version Visualization version GIF version |
Description: Characterization of the ordered pair elements of the identity relation when the intersection of their components are sets. Note that the antecedent is more general than either component being a set. (Contributed by BJ, 29-Mar-2020.) |
Ref | Expression |
---|---|
bj-opelid | ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ I ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-inexeqex 34884 | . . 3 ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
2 | 1 | ex 416 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
3 | bj-opelidb 34882 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)) | |
4 | simpr 488 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
5 | ancr 550 | . . . 4 ⊢ ((𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (𝐴 = 𝐵 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))) | |
6 | 4, 5 | impbid2 229 | . . 3 ⊢ ((𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) ↔ 𝐴 = 𝐵)) |
7 | 3, 6 | syl5bb 286 | . 2 ⊢ ((𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (〈𝐴, 𝐵〉 ∈ I ↔ 𝐴 = 𝐵)) |
8 | 2, 7 | syl 17 | 1 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ I ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∩ cin 3859 〈cop 4531 I cid 5433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-opab 5099 df-id 5434 |
This theorem is referenced by: bj-ideqg 34887 bj-opelidres 34891 bj-opelidb1ALT 34896 bj-elid4 34898 |
Copyright terms: Public domain | W3C validator |