| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-opelid | Structured version Visualization version GIF version | ||
| Description: Characterization of the ordered pair elements of the identity relation when the intersection of their components are sets. Note that the antecedent is more general than either component being a set. (Contributed by BJ, 29-Mar-2020.) |
| Ref | Expression |
|---|---|
| bj-opelid | ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ I ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-inexeqex 37198 | . . 3 ⊢ (((𝐴 ∩ 𝐵) ∈ 𝑉 ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 2 | 1 | ex 412 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
| 3 | bj-opelidb 37196 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ I ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)) | |
| 4 | simpr 484 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
| 5 | ancr 546 | . . . 4 ⊢ ((𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (𝐴 = 𝐵 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))) | |
| 6 | 4, 5 | impbid2 226 | . . 3 ⊢ ((𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) ↔ 𝐴 = 𝐵)) |
| 7 | 3, 6 | bitrid 283 | . 2 ⊢ ((𝐴 = 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (〈𝐴, 𝐵〉 ∈ I ↔ 𝐴 = 𝐵)) |
| 8 | 2, 7 | syl 17 | 1 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝑉 → (〈𝐴, 𝐵〉 ∈ I ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 〈cop 4579 I cid 5508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-opab 5152 df-id 5509 |
| This theorem is referenced by: bj-ideqg 37201 bj-opelidres 37205 bj-opelidb1ALT 37210 bj-elid4 37212 |
| Copyright terms: Public domain | W3C validator |