Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1098 Structured version   Visualization version   GIF version

Theorem bnj1098 32050
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1098.1 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj1098 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗𝑛𝑖 = suc 𝑗))
Distinct variable groups:   𝐷,𝑗   𝑖,𝑗   𝑗,𝑛
Allowed substitution hints:   𝐷(𝑖,𝑛)

Proof of Theorem bnj1098
StepHypRef Expression
1 3anrev 1097 . . . . . . 7 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) ↔ (𝑛𝐷𝑖𝑛𝑖 ≠ ∅))
2 df-3an 1085 . . . . . . 7 ((𝑛𝐷𝑖𝑛𝑖 ≠ ∅) ↔ ((𝑛𝐷𝑖𝑛) ∧ 𝑖 ≠ ∅))
31, 2bitri 277 . . . . . 6 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) ↔ ((𝑛𝐷𝑖𝑛) ∧ 𝑖 ≠ ∅))
4 simpr 487 . . . . . . . 8 ((𝑛𝐷𝑖𝑛) → 𝑖𝑛)
5 bnj1098.1 . . . . . . . . . 10 𝐷 = (ω ∖ {∅})
65bnj923 32034 . . . . . . . . 9 (𝑛𝐷𝑛 ∈ ω)
76adantr 483 . . . . . . . 8 ((𝑛𝐷𝑖𝑛) → 𝑛 ∈ ω)
8 elnn 7584 . . . . . . . 8 ((𝑖𝑛𝑛 ∈ ω) → 𝑖 ∈ ω)
94, 7, 8syl2anc 586 . . . . . . 7 ((𝑛𝐷𝑖𝑛) → 𝑖 ∈ ω)
109anim1i 616 . . . . . 6 (((𝑛𝐷𝑖𝑛) ∧ 𝑖 ≠ ∅) → (𝑖 ∈ ω ∧ 𝑖 ≠ ∅))
113, 10sylbi 219 . . . . 5 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑖 ∈ ω ∧ 𝑖 ≠ ∅))
12 nnsuc 7591 . . . . 5 ((𝑖 ∈ ω ∧ 𝑖 ≠ ∅) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗)
1311, 12syl 17 . . . 4 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗)
14 df-rex 3144 . . . . . 6 (∃𝑗 ∈ ω 𝑖 = suc 𝑗 ↔ ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗))
1514imbi2i 338 . . . . 5 (((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗) ↔ ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)))
16 19.37v 1994 . . . . 5 (∃𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)) ↔ ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)))
1715, 16bitr4i 280 . . . 4 (((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗) ↔ ∃𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)))
1813, 17mpbi 232 . . 3 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗))
19 ancr 549 . . 3 (((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)) → ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷))))
2018, 19bnj101 31988 . 2 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)))
21 vex 3498 . . . . . 6 𝑗 ∈ V
2221bnj216 31997 . . . . 5 (𝑖 = suc 𝑗𝑗𝑖)
2322ad2antlr 725 . . . 4 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑗𝑖)
24 simpr2 1191 . . . 4 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑖𝑛)
25 3simpc 1146 . . . . . . 7 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑖𝑛𝑛𝐷))
2625ancomd 464 . . . . . 6 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑛𝐷𝑖𝑛))
2726adantl 484 . . . . 5 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → (𝑛𝐷𝑖𝑛))
28 nnord 7582 . . . . 5 (𝑛 ∈ ω → Ord 𝑛)
29 ordtr1 6229 . . . . 5 (Ord 𝑛 → ((𝑗𝑖𝑖𝑛) → 𝑗𝑛))
3027, 7, 28, 294syl 19 . . . 4 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → ((𝑗𝑖𝑖𝑛) → 𝑗𝑛))
3123, 24, 30mp2and 697 . . 3 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑗𝑛)
32 simplr 767 . . 3 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑖 = suc 𝑗)
3331, 32jca 514 . 2 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → (𝑗𝑛𝑖 = suc 𝑗))
3420, 33bnj1023 32047 1 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗𝑛𝑖 = suc 𝑗))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  wrex 3139  cdif 3933  c0 4291  {csn 4561  Ord word 6185  suc csuc 6188  ωcom 7574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-tr 5166  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-om 7575
This theorem is referenced by:  bnj1110  32249  bnj1128  32257  bnj1145  32260
  Copyright terms: Public domain W3C validator