Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1098 Structured version   Visualization version   GIF version

Theorem bnj1098 32663
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1098.1 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj1098 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗𝑛𝑖 = suc 𝑗))
Distinct variable groups:   𝐷,𝑗   𝑖,𝑗   𝑗,𝑛
Allowed substitution hints:   𝐷(𝑖,𝑛)

Proof of Theorem bnj1098
StepHypRef Expression
1 3anrev 1099 . . . . . . 7 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) ↔ (𝑛𝐷𝑖𝑛𝑖 ≠ ∅))
2 df-3an 1087 . . . . . . 7 ((𝑛𝐷𝑖𝑛𝑖 ≠ ∅) ↔ ((𝑛𝐷𝑖𝑛) ∧ 𝑖 ≠ ∅))
31, 2bitri 274 . . . . . 6 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) ↔ ((𝑛𝐷𝑖𝑛) ∧ 𝑖 ≠ ∅))
4 simpr 484 . . . . . . . 8 ((𝑛𝐷𝑖𝑛) → 𝑖𝑛)
5 bnj1098.1 . . . . . . . . . 10 𝐷 = (ω ∖ {∅})
65bnj923 32648 . . . . . . . . 9 (𝑛𝐷𝑛 ∈ ω)
76adantr 480 . . . . . . . 8 ((𝑛𝐷𝑖𝑛) → 𝑛 ∈ ω)
8 elnn 7698 . . . . . . . 8 ((𝑖𝑛𝑛 ∈ ω) → 𝑖 ∈ ω)
94, 7, 8syl2anc 583 . . . . . . 7 ((𝑛𝐷𝑖𝑛) → 𝑖 ∈ ω)
109anim1i 614 . . . . . 6 (((𝑛𝐷𝑖𝑛) ∧ 𝑖 ≠ ∅) → (𝑖 ∈ ω ∧ 𝑖 ≠ ∅))
113, 10sylbi 216 . . . . 5 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑖 ∈ ω ∧ 𝑖 ≠ ∅))
12 nnsuc 7705 . . . . 5 ((𝑖 ∈ ω ∧ 𝑖 ≠ ∅) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗)
1311, 12syl 17 . . . 4 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗)
14 df-rex 3069 . . . . . 6 (∃𝑗 ∈ ω 𝑖 = suc 𝑗 ↔ ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗))
1514imbi2i 335 . . . . 5 (((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗) ↔ ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)))
16 19.37v 1996 . . . . 5 (∃𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)) ↔ ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)))
1715, 16bitr4i 277 . . . 4 (((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗) ↔ ∃𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)))
1813, 17mpbi 229 . . 3 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗))
19 ancr 546 . . 3 (((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)) → ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷))))
2018, 19bnj101 32602 . 2 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)))
21 vex 3426 . . . . . 6 𝑗 ∈ V
2221bnj216 32611 . . . . 5 (𝑖 = suc 𝑗𝑗𝑖)
2322ad2antlr 723 . . . 4 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑗𝑖)
24 simpr2 1193 . . . 4 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑖𝑛)
25 3simpc 1148 . . . . . . 7 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑖𝑛𝑛𝐷))
2625ancomd 461 . . . . . 6 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑛𝐷𝑖𝑛))
2726adantl 481 . . . . 5 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → (𝑛𝐷𝑖𝑛))
28 nnord 7695 . . . . 5 (𝑛 ∈ ω → Ord 𝑛)
29 ordtr1 6294 . . . . 5 (Ord 𝑛 → ((𝑗𝑖𝑖𝑛) → 𝑗𝑛))
3027, 7, 28, 294syl 19 . . . 4 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → ((𝑗𝑖𝑖𝑛) → 𝑗𝑛))
3123, 24, 30mp2and 695 . . 3 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑗𝑛)
32 simplr 765 . . 3 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑖 = suc 𝑗)
3331, 32jca 511 . 2 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → (𝑗𝑛𝑖 = suc 𝑗))
3420, 33bnj1023 32660 1 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗𝑛𝑖 = suc 𝑗))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wrex 3064  cdif 3880  c0 4253  {csn 4558  Ord word 6250  suc csuc 6253  ωcom 7687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-om 7688
This theorem is referenced by:  bnj1110  32862  bnj1128  32870  bnj1145  32873
  Copyright terms: Public domain W3C validator