Proof of Theorem bnj1098
Step | Hyp | Ref
| Expression |
1 | | 3anrev 1099 |
. . . . . . 7
⊢ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) ↔ (𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ∧ 𝑖 ≠ ∅)) |
2 | | df-3an 1087 |
. . . . . . 7
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ∧ 𝑖 ≠ ∅) ↔ ((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) ∧ 𝑖 ≠ ∅)) |
3 | 1, 2 | bitri 274 |
. . . . . 6
⊢ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) ↔ ((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) ∧ 𝑖 ≠ ∅)) |
4 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) → 𝑖 ∈ 𝑛) |
5 | | bnj1098.1 |
. . . . . . . . . 10
⊢ 𝐷 = (ω ∖
{∅}) |
6 | 5 | bnj923 32648 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
7 | 6 | adantr 480 |
. . . . . . . 8
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) → 𝑛 ∈ ω) |
8 | | elnn 7698 |
. . . . . . . 8
⊢ ((𝑖 ∈ 𝑛 ∧ 𝑛 ∈ ω) → 𝑖 ∈ ω) |
9 | 4, 7, 8 | syl2anc 583 |
. . . . . . 7
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) → 𝑖 ∈ ω) |
10 | 9 | anim1i 614 |
. . . . . 6
⊢ (((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) ∧ 𝑖 ≠ ∅) → (𝑖 ∈ ω ∧ 𝑖 ≠ ∅)) |
11 | 3, 10 | sylbi 216 |
. . . . 5
⊢ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑖 ∈ ω ∧ 𝑖 ≠ ∅)) |
12 | | nnsuc 7705 |
. . . . 5
⊢ ((𝑖 ∈ ω ∧ 𝑖 ≠ ∅) →
∃𝑗 ∈ ω
𝑖 = suc 𝑗) |
13 | 11, 12 | syl 17 |
. . . 4
⊢ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗) |
14 | | df-rex 3069 |
. . . . . 6
⊢
(∃𝑗 ∈
ω 𝑖 = suc 𝑗 ↔ ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)) |
15 | 14 | imbi2i 335 |
. . . . 5
⊢ (((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗) ↔ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗))) |
16 | | 19.37v 1996 |
. . . . 5
⊢
(∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)) ↔ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗))) |
17 | 15, 16 | bitr4i 277 |
. . . 4
⊢ (((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗) ↔ ∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗))) |
18 | 13, 17 | mpbi 229 |
. . 3
⊢
∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)) |
19 | | ancr 546 |
. . 3
⊢ (((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)) → ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷)))) |
20 | 18, 19 | bnj101 32602 |
. 2
⊢
∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷))) |
21 | | vex 3426 |
. . . . . 6
⊢ 𝑗 ∈ V |
22 | 21 | bnj216 32611 |
. . . . 5
⊢ (𝑖 = suc 𝑗 → 𝑗 ∈ 𝑖) |
23 | 22 | ad2antlr 723 |
. . . 4
⊢ (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷)) → 𝑗 ∈ 𝑖) |
24 | | simpr2 1193 |
. . . 4
⊢ (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷)) → 𝑖 ∈ 𝑛) |
25 | | 3simpc 1148 |
. . . . . . 7
⊢ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷)) |
26 | 25 | ancomd 461 |
. . . . . 6
⊢ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛)) |
27 | 26 | adantl 481 |
. . . . 5
⊢ (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷)) → (𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛)) |
28 | | nnord 7695 |
. . . . 5
⊢ (𝑛 ∈ ω → Ord 𝑛) |
29 | | ordtr1 6294 |
. . . . 5
⊢ (Ord
𝑛 → ((𝑗 ∈ 𝑖 ∧ 𝑖 ∈ 𝑛) → 𝑗 ∈ 𝑛)) |
30 | 27, 7, 28, 29 | 4syl 19 |
. . . 4
⊢ (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷)) → ((𝑗 ∈ 𝑖 ∧ 𝑖 ∈ 𝑛) → 𝑗 ∈ 𝑛)) |
31 | 23, 24, 30 | mp2and 695 |
. . 3
⊢ (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷)) → 𝑗 ∈ 𝑛) |
32 | | simplr 765 |
. . 3
⊢ (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷)) → 𝑖 = suc 𝑗) |
33 | 31, 32 | jca 511 |
. 2
⊢ (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷)) → (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗)) |
34 | 20, 33 | bnj1023 32660 |
1
⊢
∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗)) |