Proof of Theorem bnj1098
| Step | Hyp | Ref
| Expression |
| 1 | | 3anrev 1101 |
. . . . . . 7
⊢ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) ↔ (𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ∧ 𝑖 ≠ ∅)) |
| 2 | | df-3an 1089 |
. . . . . . 7
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ∧ 𝑖 ≠ ∅) ↔ ((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) ∧ 𝑖 ≠ ∅)) |
| 3 | 1, 2 | bitri 275 |
. . . . . 6
⊢ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) ↔ ((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) ∧ 𝑖 ≠ ∅)) |
| 4 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) → 𝑖 ∈ 𝑛) |
| 5 | | bnj1098.1 |
. . . . . . . . . 10
⊢ 𝐷 = (ω ∖
{∅}) |
| 6 | 5 | bnj923 34782 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
| 7 | 6 | adantr 480 |
. . . . . . . 8
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) → 𝑛 ∈ ω) |
| 8 | | elnn 7898 |
. . . . . . . 8
⊢ ((𝑖 ∈ 𝑛 ∧ 𝑛 ∈ ω) → 𝑖 ∈ ω) |
| 9 | 4, 7, 8 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) → 𝑖 ∈ ω) |
| 10 | 9 | anim1i 615 |
. . . . . 6
⊢ (((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) ∧ 𝑖 ≠ ∅) → (𝑖 ∈ ω ∧ 𝑖 ≠ ∅)) |
| 11 | 3, 10 | sylbi 217 |
. . . . 5
⊢ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑖 ∈ ω ∧ 𝑖 ≠ ∅)) |
| 12 | | nnsuc 7905 |
. . . . 5
⊢ ((𝑖 ∈ ω ∧ 𝑖 ≠ ∅) →
∃𝑗 ∈ ω
𝑖 = suc 𝑗) |
| 13 | 11, 12 | syl 17 |
. . . 4
⊢ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗) |
| 14 | | df-rex 3071 |
. . . . . 6
⊢
(∃𝑗 ∈
ω 𝑖 = suc 𝑗 ↔ ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)) |
| 15 | 14 | imbi2i 336 |
. . . . 5
⊢ (((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗) ↔ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗))) |
| 16 | | 19.37v 1991 |
. . . . 5
⊢
(∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)) ↔ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗))) |
| 17 | 15, 16 | bitr4i 278 |
. . . 4
⊢ (((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗) ↔ ∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗))) |
| 18 | 13, 17 | mpbi 230 |
. . 3
⊢
∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)) |
| 19 | | ancr 546 |
. . 3
⊢ (((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)) → ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷)))) |
| 20 | 18, 19 | bnj101 34737 |
. 2
⊢
∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷))) |
| 21 | | vex 3484 |
. . . . . 6
⊢ 𝑗 ∈ V |
| 22 | 21 | bnj216 34746 |
. . . . 5
⊢ (𝑖 = suc 𝑗 → 𝑗 ∈ 𝑖) |
| 23 | 22 | ad2antlr 727 |
. . . 4
⊢ (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷)) → 𝑗 ∈ 𝑖) |
| 24 | | simpr2 1196 |
. . . 4
⊢ (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷)) → 𝑖 ∈ 𝑛) |
| 25 | | 3simpc 1151 |
. . . . . . 7
⊢ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷)) |
| 26 | 25 | ancomd 461 |
. . . . . 6
⊢ ((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛)) |
| 27 | 26 | adantl 481 |
. . . . 5
⊢ (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷)) → (𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛)) |
| 28 | | nnord 7895 |
. . . . 5
⊢ (𝑛 ∈ ω → Ord 𝑛) |
| 29 | | ordtr1 6427 |
. . . . 5
⊢ (Ord
𝑛 → ((𝑗 ∈ 𝑖 ∧ 𝑖 ∈ 𝑛) → 𝑗 ∈ 𝑛)) |
| 30 | 27, 7, 28, 29 | 4syl 19 |
. . . 4
⊢ (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷)) → ((𝑗 ∈ 𝑖 ∧ 𝑖 ∈ 𝑛) → 𝑗 ∈ 𝑛)) |
| 31 | 23, 24, 30 | mp2and 699 |
. . 3
⊢ (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷)) → 𝑗 ∈ 𝑛) |
| 32 | | simplr 769 |
. . 3
⊢ (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷)) → 𝑖 = suc 𝑗) |
| 33 | 31, 32 | jca 511 |
. 2
⊢ (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷)) → (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗)) |
| 34 | 20, 33 | bnj1023 34794 |
1
⊢
∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗)) |