Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1098 Structured version   Visualization version   GIF version

Theorem bnj1098 34093
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1098.1 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj1098 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗𝑛𝑖 = suc 𝑗))
Distinct variable groups:   𝐷,𝑗   𝑖,𝑗   𝑗,𝑛
Allowed substitution hints:   𝐷(𝑖,𝑛)

Proof of Theorem bnj1098
StepHypRef Expression
1 3anrev 1100 . . . . . . 7 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) ↔ (𝑛𝐷𝑖𝑛𝑖 ≠ ∅))
2 df-3an 1088 . . . . . . 7 ((𝑛𝐷𝑖𝑛𝑖 ≠ ∅) ↔ ((𝑛𝐷𝑖𝑛) ∧ 𝑖 ≠ ∅))
31, 2bitri 275 . . . . . 6 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) ↔ ((𝑛𝐷𝑖𝑛) ∧ 𝑖 ≠ ∅))
4 simpr 484 . . . . . . . 8 ((𝑛𝐷𝑖𝑛) → 𝑖𝑛)
5 bnj1098.1 . . . . . . . . . 10 𝐷 = (ω ∖ {∅})
65bnj923 34078 . . . . . . . . 9 (𝑛𝐷𝑛 ∈ ω)
76adantr 480 . . . . . . . 8 ((𝑛𝐷𝑖𝑛) → 𝑛 ∈ ω)
8 elnn 7869 . . . . . . . 8 ((𝑖𝑛𝑛 ∈ ω) → 𝑖 ∈ ω)
94, 7, 8syl2anc 583 . . . . . . 7 ((𝑛𝐷𝑖𝑛) → 𝑖 ∈ ω)
109anim1i 614 . . . . . 6 (((𝑛𝐷𝑖𝑛) ∧ 𝑖 ≠ ∅) → (𝑖 ∈ ω ∧ 𝑖 ≠ ∅))
113, 10sylbi 216 . . . . 5 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑖 ∈ ω ∧ 𝑖 ≠ ∅))
12 nnsuc 7876 . . . . 5 ((𝑖 ∈ ω ∧ 𝑖 ≠ ∅) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗)
1311, 12syl 17 . . . 4 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗)
14 df-rex 3070 . . . . . 6 (∃𝑗 ∈ ω 𝑖 = suc 𝑗 ↔ ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗))
1514imbi2i 336 . . . . 5 (((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗) ↔ ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)))
16 19.37v 1994 . . . . 5 (∃𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)) ↔ ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)))
1715, 16bitr4i 278 . . . 4 (((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗) ↔ ∃𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)))
1813, 17mpbi 229 . . 3 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗))
19 ancr 546 . . 3 (((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)) → ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷))))
2018, 19bnj101 34033 . 2 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)))
21 vex 3477 . . . . . 6 𝑗 ∈ V
2221bnj216 34042 . . . . 5 (𝑖 = suc 𝑗𝑗𝑖)
2322ad2antlr 724 . . . 4 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑗𝑖)
24 simpr2 1194 . . . 4 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑖𝑛)
25 3simpc 1149 . . . . . . 7 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑖𝑛𝑛𝐷))
2625ancomd 461 . . . . . 6 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑛𝐷𝑖𝑛))
2726adantl 481 . . . . 5 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → (𝑛𝐷𝑖𝑛))
28 nnord 7866 . . . . 5 (𝑛 ∈ ω → Ord 𝑛)
29 ordtr1 6407 . . . . 5 (Ord 𝑛 → ((𝑗𝑖𝑖𝑛) → 𝑗𝑛))
3027, 7, 28, 294syl 19 . . . 4 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → ((𝑗𝑖𝑖𝑛) → 𝑗𝑛))
3123, 24, 30mp2and 696 . . 3 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑗𝑛)
32 simplr 766 . . 3 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑖 = suc 𝑗)
3331, 32jca 511 . 2 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → (𝑗𝑛𝑖 = suc 𝑗))
3420, 33bnj1023 34090 1 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗𝑛𝑖 = suc 𝑗))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1780  wcel 2105  wne 2939  wrex 3069  cdif 3945  c0 4322  {csn 4628  Ord word 6363  suc csuc 6366  ωcom 7858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-om 7859
This theorem is referenced by:  bnj1110  34292  bnj1128  34300  bnj1145  34303
  Copyright terms: Public domain W3C validator