![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intmin4 | Structured version Visualization version GIF version |
Description: Elimination of a conjunct in a class intersection. (Contributed by NM, 31-Jul-2006.) |
Ref | Expression |
---|---|
intmin4 | ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} = ∩ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintab 4684 | . . . 4 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ⊆ 𝑥)) | |
2 | simpr 478 | . . . . . . . 8 ⊢ ((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝜑) | |
3 | ancr 543 | . . . . . . . 8 ⊢ ((𝜑 → 𝐴 ⊆ 𝑥) → (𝜑 → (𝐴 ⊆ 𝑥 ∧ 𝜑))) | |
4 | 2, 3 | impbid2 218 | . . . . . . 7 ⊢ ((𝜑 → 𝐴 ⊆ 𝑥) → ((𝐴 ⊆ 𝑥 ∧ 𝜑) ↔ 𝜑)) |
5 | 4 | imbi1d 333 | . . . . . 6 ⊢ ((𝜑 → 𝐴 ⊆ 𝑥) → (((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ (𝜑 → 𝑦 ∈ 𝑥))) |
6 | 5 | alimi 1907 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝐴 ⊆ 𝑥) → ∀𝑥(((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ (𝜑 → 𝑦 ∈ 𝑥))) |
7 | albi 1914 | . . . . 5 ⊢ (∀𝑥(((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ (𝜑 → 𝑦 ∈ 𝑥)) → (∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥))) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝐴 ⊆ 𝑥) → (∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥))) |
9 | 1, 8 | sylbi 209 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → (∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥))) |
10 | vex 3388 | . . . 4 ⊢ 𝑦 ∈ V | |
11 | 10 | elintab 4678 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} ↔ ∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥)) |
12 | 10 | elintab 4678 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥)) |
13 | 9, 11, 12 | 3bitr4g 306 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → (𝑦 ∈ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} ↔ 𝑦 ∈ ∩ {𝑥 ∣ 𝜑})) |
14 | 13 | eqrdv 2797 | 1 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} = ∩ {𝑥 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∀wal 1651 = wceq 1653 ∈ wcel 2157 {cab 2785 ⊆ wss 3769 ∩ cint 4667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-v 3387 df-in 3776 df-ss 3783 df-int 4668 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |