Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intmin4 | Structured version Visualization version GIF version |
Description: Elimination of a conjunct in a class intersection. (Contributed by NM, 31-Jul-2006.) |
Ref | Expression |
---|---|
intmin4 | ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} = ∩ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintab 4893 | . . . 4 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ⊆ 𝑥)) | |
2 | simpr 484 | . . . . . . . 8 ⊢ ((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝜑) | |
3 | ancr 546 | . . . . . . . 8 ⊢ ((𝜑 → 𝐴 ⊆ 𝑥) → (𝜑 → (𝐴 ⊆ 𝑥 ∧ 𝜑))) | |
4 | 2, 3 | impbid2 225 | . . . . . . 7 ⊢ ((𝜑 → 𝐴 ⊆ 𝑥) → ((𝐴 ⊆ 𝑥 ∧ 𝜑) ↔ 𝜑)) |
5 | 4 | imbi1d 341 | . . . . . 6 ⊢ ((𝜑 → 𝐴 ⊆ 𝑥) → (((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ (𝜑 → 𝑦 ∈ 𝑥))) |
6 | 5 | alimi 1815 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝐴 ⊆ 𝑥) → ∀𝑥(((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ (𝜑 → 𝑦 ∈ 𝑥))) |
7 | albi 1822 | . . . . 5 ⊢ (∀𝑥(((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ (𝜑 → 𝑦 ∈ 𝑥)) → (∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥))) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝐴 ⊆ 𝑥) → (∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥))) |
9 | 1, 8 | sylbi 216 | . . 3 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → (∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥) ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥))) |
10 | vex 3426 | . . . 4 ⊢ 𝑦 ∈ V | |
11 | 10 | elintab 4887 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} ↔ ∀𝑥((𝐴 ⊆ 𝑥 ∧ 𝜑) → 𝑦 ∈ 𝑥)) |
12 | 10 | elintab 4887 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝑦 ∈ 𝑥)) |
13 | 9, 11, 12 | 3bitr4g 313 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → (𝑦 ∈ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} ↔ 𝑦 ∈ ∩ {𝑥 ∣ 𝜑})) |
14 | 13 | eqrdv 2736 | 1 ⊢ (𝐴 ⊆ ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ 𝜑)} = ∩ {𝑥 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 {cab 2715 ⊆ wss 3883 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-int 4877 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |