MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intmin4 Structured version   Visualization version   GIF version

Theorem intmin4 4867
Description: Elimination of a conjunct in a class intersection. (Contributed by NM, 31-Jul-2006.)
Assertion
Ref Expression
intmin4 (𝐴 {𝑥𝜑} → {𝑥 ∣ (𝐴𝑥𝜑)} = {𝑥𝜑})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem intmin4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssintab 4855 . . . 4 (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
2 simpr 488 . . . . . . . 8 ((𝐴𝑥𝜑) → 𝜑)
3 ancr 550 . . . . . . . 8 ((𝜑𝐴𝑥) → (𝜑 → (𝐴𝑥𝜑)))
42, 3impbid2 229 . . . . . . 7 ((𝜑𝐴𝑥) → ((𝐴𝑥𝜑) ↔ 𝜑))
54imbi1d 345 . . . . . 6 ((𝜑𝐴𝑥) → (((𝐴𝑥𝜑) → 𝑦𝑥) ↔ (𝜑𝑦𝑥)))
65alimi 1813 . . . . 5 (∀𝑥(𝜑𝐴𝑥) → ∀𝑥(((𝐴𝑥𝜑) → 𝑦𝑥) ↔ (𝜑𝑦𝑥)))
7 albi 1820 . . . . 5 (∀𝑥(((𝐴𝑥𝜑) → 𝑦𝑥) ↔ (𝜑𝑦𝑥)) → (∀𝑥((𝐴𝑥𝜑) → 𝑦𝑥) ↔ ∀𝑥(𝜑𝑦𝑥)))
86, 7syl 17 . . . 4 (∀𝑥(𝜑𝐴𝑥) → (∀𝑥((𝐴𝑥𝜑) → 𝑦𝑥) ↔ ∀𝑥(𝜑𝑦𝑥)))
91, 8sylbi 220 . . 3 (𝐴 {𝑥𝜑} → (∀𝑥((𝐴𝑥𝜑) → 𝑦𝑥) ↔ ∀𝑥(𝜑𝑦𝑥)))
10 vex 3413 . . . 4 𝑦 ∈ V
1110elintab 4849 . . 3 (𝑦 {𝑥 ∣ (𝐴𝑥𝜑)} ↔ ∀𝑥((𝐴𝑥𝜑) → 𝑦𝑥))
1210elintab 4849 . . 3 (𝑦 {𝑥𝜑} ↔ ∀𝑥(𝜑𝑦𝑥))
139, 11, 123bitr4g 317 . 2 (𝐴 {𝑥𝜑} → (𝑦 {𝑥 ∣ (𝐴𝑥𝜑)} ↔ 𝑦 {𝑥𝜑}))
1413eqrdv 2756 1 (𝐴 {𝑥𝜑} → {𝑥 ∣ (𝐴𝑥𝜑)} = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2111  {cab 2735  wss 3858   cint 4838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-ral 3075  df-v 3411  df-in 3865  df-ss 3875  df-int 4839
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator