Step | Hyp | Ref
| Expression |
1 | | eqeq2 2750 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) |
2 | 1 | imbi2d 340 |
. . . . 5
⊢ (𝑦 = 𝐴 → ((𝜑 → 𝑥 = 𝑦) ↔ (𝜑 → 𝑥 = 𝐴))) |
3 | 2 | albidv 1924 |
. . . 4
⊢ (𝑦 = 𝐴 → (∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝜑 → 𝑥 = 𝐴))) |
4 | | dfsbcq 3713 |
. . . . 5
⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
5 | 4 | bibi1d 343 |
. . . 4
⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ↔ ∃𝑥𝜑) ↔ ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥𝜑))) |
6 | 3, 5 | imbi12d 344 |
. . 3
⊢ (𝑦 = 𝐴 → ((∀𝑥(𝜑 → 𝑥 = 𝑦) → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥𝜑)) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) → ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥𝜑)))) |
7 | | sbc5 3739 |
. . . 4
⊢
([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
8 | | nfa1 2150 |
. . . . 5
⊢
Ⅎ𝑥∀𝑥(𝜑 → 𝑥 = 𝑦) |
9 | | simpr 484 |
. . . . . 6
⊢ ((𝑥 = 𝑦 ∧ 𝜑) → 𝜑) |
10 | | ancr 546 |
. . . . . . 7
⊢ ((𝜑 → 𝑥 = 𝑦) → (𝜑 → (𝑥 = 𝑦 ∧ 𝜑))) |
11 | 10 | sps 2180 |
. . . . . 6
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑦) → (𝜑 → (𝑥 = 𝑦 ∧ 𝜑))) |
12 | 9, 11 | impbid2 225 |
. . . . 5
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑦) → ((𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜑)) |
13 | 8, 12 | exbid 2219 |
. . . 4
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑦) → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥𝜑)) |
14 | 7, 13 | syl5bb 282 |
. . 3
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑦) → ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥𝜑)) |
15 | 6, 14 | vtoclg 3495 |
. 2
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 → 𝑥 = 𝐴) → ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥𝜑))) |
16 | 15 | pm5.32d 576 |
1
⊢ (𝐴 ∈ 𝑉 → ((∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) ∧ ∃𝑥𝜑))) |