![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvmulex | Structured version Visualization version GIF version |
Description: The Hilbert space scalar product operation is a set. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulex | ⊢ ·ℎ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hfvmul 31050 | . 2 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
2 | cnex 11243 | . . 3 ⊢ ℂ ∈ V | |
3 | ax-hilex 31044 | . . 3 ⊢ ℋ ∈ V | |
4 | 2, 3 | xpex 7779 | . 2 ⊢ (ℂ × ℋ) ∈ V |
5 | fex 7253 | . 2 ⊢ (( ·ℎ :(ℂ × ℋ)⟶ ℋ ∧ (ℂ × ℋ) ∈ V) → ·ℎ ∈ V) | |
6 | 1, 4, 5 | mp2an 692 | 1 ⊢ ·ℎ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3481 × cxp 5691 ⟶wf 6565 ℂcc 11160 ℋchba 30964 ·ℎ csm 30966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-hilex 31044 ax-hfvmul 31050 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 |
This theorem is referenced by: hhph 31223 hhssva 31302 hhsssm 31303 hhshsslem1 31312 |
Copyright terms: Public domain | W3C validator |