HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulex Structured version   Visualization version   GIF version

Theorem hvmulex 29274
Description: The Hilbert space scalar product operation is a set. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hvmulex · ∈ V

Proof of Theorem hvmulex
StepHypRef Expression
1 ax-hfvmul 29268 . 2 · :(ℂ × ℋ)⟶ ℋ
2 cnex 10883 . . 3 ℂ ∈ V
3 ax-hilex 29262 . . 3 ℋ ∈ V
42, 3xpex 7581 . 2 (ℂ × ℋ) ∈ V
5 fex 7084 . 2 (( · :(ℂ × ℋ)⟶ ℋ ∧ (ℂ × ℋ) ∈ V) → · ∈ V)
61, 4, 5mp2an 688 1 · ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3422   × cxp 5578  wf 6414  cc 10800  chba 29182   · csm 29184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-hilex 29262  ax-hfvmul 29268
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426
This theorem is referenced by:  hhph  29441  hhssva  29520  hhsssm  29521  hhshsslem1  29530
  Copyright terms: Public domain W3C validator