![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvmulex | Structured version Visualization version GIF version |
Description: The Hilbert space scalar product operation is a set. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulex | ⊢ ·ℎ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hfvmul 31039 | . 2 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
2 | cnex 11267 | . . 3 ⊢ ℂ ∈ V | |
3 | ax-hilex 31033 | . . 3 ⊢ ℋ ∈ V | |
4 | 2, 3 | xpex 7790 | . 2 ⊢ (ℂ × ℋ) ∈ V |
5 | fex 7265 | . 2 ⊢ (( ·ℎ :(ℂ × ℋ)⟶ ℋ ∧ (ℂ × ℋ) ∈ V) → ·ℎ ∈ V) | |
6 | 1, 4, 5 | mp2an 691 | 1 ⊢ ·ℎ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 × cxp 5698 ⟶wf 6571 ℂcc 11184 ℋchba 30953 ·ℎ csm 30955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-hilex 31033 ax-hfvmul 31039 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 |
This theorem is referenced by: hhph 31212 hhssva 31291 hhsssm 31292 hhshsslem1 31301 |
Copyright terms: Public domain | W3C validator |