HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulex Structured version   Visualization version   GIF version

Theorem hvmulex 29373
Description: The Hilbert space scalar product operation is a set. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hvmulex · ∈ V

Proof of Theorem hvmulex
StepHypRef Expression
1 ax-hfvmul 29367 . 2 · :(ℂ × ℋ)⟶ ℋ
2 cnex 10952 . . 3 ℂ ∈ V
3 ax-hilex 29361 . . 3 ℋ ∈ V
42, 3xpex 7603 . 2 (ℂ × ℋ) ∈ V
5 fex 7102 . 2 (( · :(ℂ × ℋ)⟶ ℋ ∧ (ℂ × ℋ) ∈ V) → · ∈ V)
61, 4, 5mp2an 689 1 · ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3432   × cxp 5587  wf 6429  cc 10869  chba 29281   · csm 29283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-hilex 29361  ax-hfvmul 29367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by:  hhph  29540  hhssva  29619  hhsssm  29620  hhshsslem1  29629
  Copyright terms: Public domain W3C validator