HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulex Structured version   Visualization version   GIF version

Theorem hvmulex 28938
Description: The Hilbert space scalar product operation is a set. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hvmulex · ∈ V

Proof of Theorem hvmulex
StepHypRef Expression
1 ax-hfvmul 28932 . 2 · :(ℂ × ℋ)⟶ ℋ
2 cnex 10689 . . 3 ℂ ∈ V
3 ax-hilex 28926 . . 3 ℋ ∈ V
42, 3xpex 7488 . 2 (ℂ × ℋ) ∈ V
5 fex 6993 . 2 (( · :(ℂ × ℋ)⟶ ℋ ∧ (ℂ × ℋ) ∈ V) → · ∈ V)
61, 4, 5mp2an 692 1 · ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  Vcvv 3397   × cxp 5517  wf 6329  cc 10606  chba 28846   · csm 28848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-hilex 28926  ax-hfvmul 28932
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341
This theorem is referenced by:  hhph  29105  hhssva  29184  hhsssm  29185  hhshsslem1  29194
  Copyright terms: Public domain W3C validator