HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulex Structured version   Visualization version   GIF version

Theorem hvmulex 29995
Description: The Hilbert space scalar product operation is a set. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hvmulex · ∈ V

Proof of Theorem hvmulex
StepHypRef Expression
1 ax-hfvmul 29989 . 2 · :(ℂ × ℋ)⟶ ℋ
2 cnex 11139 . . 3 ℂ ∈ V
3 ax-hilex 29983 . . 3 ℋ ∈ V
42, 3xpex 7692 . 2 (ℂ × ℋ) ∈ V
5 fex 7181 . 2 (( · :(ℂ × ℋ)⟶ ℋ ∧ (ℂ × ℋ) ∈ V) → · ∈ V)
61, 4, 5mp2an 691 1 · ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3448   × cxp 5636  wf 6497  cc 11056  chba 29903   · csm 29905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-hilex 29983  ax-hfvmul 29989
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509
This theorem is referenced by:  hhph  30162  hhssva  30241  hhsssm  30242  hhshsslem1  30251
  Copyright terms: Public domain W3C validator