| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvmulex | Structured version Visualization version GIF version | ||
| Description: The Hilbert space scalar product operation is a set. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvmulex | ⊢ ·ℎ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hfvmul 30941 | . 2 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
| 2 | cnex 11167 | . . 3 ⊢ ℂ ∈ V | |
| 3 | ax-hilex 30935 | . . 3 ⊢ ℋ ∈ V | |
| 4 | 2, 3 | xpex 7736 | . 2 ⊢ (ℂ × ℋ) ∈ V |
| 5 | fex 7207 | . 2 ⊢ (( ·ℎ :(ℂ × ℋ)⟶ ℋ ∧ (ℂ × ℋ) ∈ V) → ·ℎ ∈ V) | |
| 6 | 1, 4, 5 | mp2an 692 | 1 ⊢ ·ℎ ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3455 × cxp 5644 ⟶wf 6515 ℂcc 11084 ℋchba 30855 ·ℎ csm 30857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-hilex 30935 ax-hfvmul 30941 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 |
| This theorem is referenced by: hhph 31114 hhssva 31193 hhsssm 31194 hhshsslem1 31203 |
| Copyright terms: Public domain | W3C validator |