HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hi01 Structured version   Visualization version   GIF version

Theorem hi01 31032
Description: Inner product with the 0 vector. (Contributed by NM, 29-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hi01 (𝐴 ∈ ℋ → (0 ·ih 𝐴) = 0)

Proof of Theorem hi01
StepHypRef Expression
1 ax-hv0cl 30939 . . . . 5 0 ∈ ℋ
2 ax-hvmul0 30946 . . . . 5 (0 ∈ ℋ → (0 · 0) = 0)
31, 2ax-mp 5 . . . 4 (0 · 0) = 0
43oveq1i 7400 . . 3 ((0 · 0) ·ih 𝐴) = (0 ·ih 𝐴)
5 0cn 11173 . . . 4 0 ∈ ℂ
6 ax-his3 31020 . . . 4 ((0 ∈ ℂ ∧ 0 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((0 · 0) ·ih 𝐴) = (0 · (0 ·ih 𝐴)))
75, 1, 6mp3an12 1453 . . 3 (𝐴 ∈ ℋ → ((0 · 0) ·ih 𝐴) = (0 · (0 ·ih 𝐴)))
84, 7eqtr3id 2779 . 2 (𝐴 ∈ ℋ → (0 ·ih 𝐴) = (0 · (0 ·ih 𝐴)))
9 hicl 31016 . . . 4 ((0 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (0 ·ih 𝐴) ∈ ℂ)
101, 9mpan 690 . . 3 (𝐴 ∈ ℋ → (0 ·ih 𝐴) ∈ ℂ)
1110mul02d 11379 . 2 (𝐴 ∈ ℋ → (0 · (0 ·ih 𝐴)) = 0)
128, 11eqtrd 2765 1 (𝐴 ∈ ℋ → (0 ·ih 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7390  cc 11073  0cc0 11075   · cmul 11080  chba 30855   · csm 30857   ·ih csp 30858  0c0v 30860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-hv0cl 30939  ax-hvmul0 30946  ax-hfi 31015  ax-his3 31020
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220
This theorem is referenced by:  hi02  31033  hiidge0  31034  his6  31035  hial0  31038  normgt0  31063  norm0  31064  ocsh  31219  0hmop  31919  adj0  31930  lnopeq0i  31943  leop3  32061  leoprf2  32063  leoprf  32064  idleop  32067
  Copyright terms: Public domain W3C validator