HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hi01 Structured version   Visualization version   GIF version

Theorem hi01 31076
Description: Inner product with the 0 vector. (Contributed by NM, 29-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hi01 (𝐴 ∈ ℋ → (0 ·ih 𝐴) = 0)

Proof of Theorem hi01
StepHypRef Expression
1 ax-hv0cl 30983 . . . . 5 0 ∈ ℋ
2 ax-hvmul0 30990 . . . . 5 (0 ∈ ℋ → (0 · 0) = 0)
31, 2ax-mp 5 . . . 4 (0 · 0) = 0
43oveq1i 7356 . . 3 ((0 · 0) ·ih 𝐴) = (0 ·ih 𝐴)
5 0cn 11104 . . . 4 0 ∈ ℂ
6 ax-his3 31064 . . . 4 ((0 ∈ ℂ ∧ 0 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((0 · 0) ·ih 𝐴) = (0 · (0 ·ih 𝐴)))
75, 1, 6mp3an12 1453 . . 3 (𝐴 ∈ ℋ → ((0 · 0) ·ih 𝐴) = (0 · (0 ·ih 𝐴)))
84, 7eqtr3id 2780 . 2 (𝐴 ∈ ℋ → (0 ·ih 𝐴) = (0 · (0 ·ih 𝐴)))
9 hicl 31060 . . . 4 ((0 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (0 ·ih 𝐴) ∈ ℂ)
101, 9mpan 690 . . 3 (𝐴 ∈ ℋ → (0 ·ih 𝐴) ∈ ℂ)
1110mul02d 11311 . 2 (𝐴 ∈ ℋ → (0 · (0 ·ih 𝐴)) = 0)
128, 11eqtrd 2766 1 (𝐴 ∈ ℋ → (0 ·ih 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11004  0cc0 11006   · cmul 11011  chba 30899   · csm 30901   ·ih csp 30902  0c0v 30904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-hv0cl 30983  ax-hvmul0 30990  ax-hfi 31059  ax-his3 31064
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151
This theorem is referenced by:  hi02  31077  hiidge0  31078  his6  31079  hial0  31082  normgt0  31107  norm0  31108  ocsh  31263  0hmop  31963  adj0  31974  lnopeq0i  31987  leop3  32105  leoprf2  32107  leoprf  32108  idleop  32111
  Copyright terms: Public domain W3C validator