| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hi01 | Structured version Visualization version GIF version | ||
| Description: Inner product with the 0 vector. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hi01 | ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl 30905 | . . . . 5 ⊢ 0ℎ ∈ ℋ | |
| 2 | ax-hvmul0 30912 | . . . . 5 ⊢ (0ℎ ∈ ℋ → (0 ·ℎ 0ℎ) = 0ℎ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (0 ·ℎ 0ℎ) = 0ℎ |
| 4 | 3 | oveq1i 7379 | . . 3 ⊢ ((0 ·ℎ 0ℎ) ·ih 𝐴) = (0ℎ ·ih 𝐴) |
| 5 | 0cn 11142 | . . . 4 ⊢ 0 ∈ ℂ | |
| 6 | ax-his3 30986 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 0ℎ ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((0 ·ℎ 0ℎ) ·ih 𝐴) = (0 · (0ℎ ·ih 𝐴))) | |
| 7 | 5, 1, 6 | mp3an12 1453 | . . 3 ⊢ (𝐴 ∈ ℋ → ((0 ·ℎ 0ℎ) ·ih 𝐴) = (0 · (0ℎ ·ih 𝐴))) |
| 8 | 4, 7 | eqtr3id 2778 | . 2 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = (0 · (0ℎ ·ih 𝐴))) |
| 9 | hicl 30982 | . . . 4 ⊢ ((0ℎ ∈ ℋ ∧ 𝐴 ∈ ℋ) → (0ℎ ·ih 𝐴) ∈ ℂ) | |
| 10 | 1, 9 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) ∈ ℂ) |
| 11 | 10 | mul02d 11348 | . 2 ⊢ (𝐴 ∈ ℋ → (0 · (0ℎ ·ih 𝐴)) = 0) |
| 12 | 8, 11 | eqtrd 2764 | 1 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 0cc0 11044 · cmul 11049 ℋchba 30821 ·ℎ csm 30823 ·ih csp 30824 0ℎc0v 30826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-hv0cl 30905 ax-hvmul0 30912 ax-hfi 30981 ax-his3 30986 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 |
| This theorem is referenced by: hi02 30999 hiidge0 31000 his6 31001 hial0 31004 normgt0 31029 norm0 31030 ocsh 31185 0hmop 31885 adj0 31896 lnopeq0i 31909 leop3 32027 leoprf2 32029 leoprf 32030 idleop 32033 |
| Copyright terms: Public domain | W3C validator |