![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hi01 | Structured version Visualization version GIF version |
Description: Inner product with the 0 vector. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hi01 | ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 31032 | . . . . 5 ⊢ 0ℎ ∈ ℋ | |
2 | ax-hvmul0 31039 | . . . . 5 ⊢ (0ℎ ∈ ℋ → (0 ·ℎ 0ℎ) = 0ℎ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (0 ·ℎ 0ℎ) = 0ℎ |
4 | 3 | oveq1i 7441 | . . 3 ⊢ ((0 ·ℎ 0ℎ) ·ih 𝐴) = (0ℎ ·ih 𝐴) |
5 | 0cn 11251 | . . . 4 ⊢ 0 ∈ ℂ | |
6 | ax-his3 31113 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 0ℎ ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((0 ·ℎ 0ℎ) ·ih 𝐴) = (0 · (0ℎ ·ih 𝐴))) | |
7 | 5, 1, 6 | mp3an12 1450 | . . 3 ⊢ (𝐴 ∈ ℋ → ((0 ·ℎ 0ℎ) ·ih 𝐴) = (0 · (0ℎ ·ih 𝐴))) |
8 | 4, 7 | eqtr3id 2789 | . 2 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = (0 · (0ℎ ·ih 𝐴))) |
9 | hicl 31109 | . . . 4 ⊢ ((0ℎ ∈ ℋ ∧ 𝐴 ∈ ℋ) → (0ℎ ·ih 𝐴) ∈ ℂ) | |
10 | 1, 9 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) ∈ ℂ) |
11 | 10 | mul02d 11457 | . 2 ⊢ (𝐴 ∈ ℋ → (0 · (0ℎ ·ih 𝐴)) = 0) |
12 | 8, 11 | eqtrd 2775 | 1 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 0cc0 11153 · cmul 11158 ℋchba 30948 ·ℎ csm 30950 ·ih csp 30951 0ℎc0v 30953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-hv0cl 31032 ax-hvmul0 31039 ax-hfi 31108 ax-his3 31113 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 |
This theorem is referenced by: hi02 31126 hiidge0 31127 his6 31128 hial0 31131 normgt0 31156 norm0 31157 ocsh 31312 0hmop 32012 adj0 32023 lnopeq0i 32036 leop3 32154 leoprf2 32156 leoprf 32157 idleop 32160 |
Copyright terms: Public domain | W3C validator |