HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h1de2ctlem Structured version   Visualization version   GIF version

Theorem h1de2ctlem 31484
Description: Lemma for h1de2ci 31485. (Contributed by NM, 19-Jul-2001.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
h1de2.1 𝐴 ∈ ℋ
h1de2.2 𝐵 ∈ ℋ
Assertion
Ref Expression
h1de2ctlem (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem h1de2ctlem
StepHypRef Expression
1 h1de2.1 . . . . . . . 8 𝐴 ∈ ℋ
21elexi 3470 . . . . . . 7 𝐴 ∈ V
32elsn 4604 . . . . . 6 (𝐴 ∈ {0} ↔ 𝐴 = 0)
4 hsn0elch 31177 . . . . . . . 8 {0} ∈ C
54ococi 31334 . . . . . . 7 (⊥‘(⊥‘{0})) = {0}
65eleq2i 2820 . . . . . 6 (𝐴 ∈ (⊥‘(⊥‘{0})) ↔ 𝐴 ∈ {0})
7 h1de2.2 . . . . . . . 8 𝐵 ∈ ℋ
8 ax-hvmul0 30939 . . . . . . . 8 (𝐵 ∈ ℋ → (0 · 𝐵) = 0)
97, 8ax-mp 5 . . . . . . 7 (0 · 𝐵) = 0
109eqeq2i 2742 . . . . . 6 (𝐴 = (0 · 𝐵) ↔ 𝐴 = 0)
113, 6, 103bitr4ri 304 . . . . 5 (𝐴 = (0 · 𝐵) ↔ 𝐴 ∈ (⊥‘(⊥‘{0})))
12 sneq 4599 . . . . . . . 8 (𝐵 = 0 → {𝐵} = {0})
1312fveq2d 6862 . . . . . . 7 (𝐵 = 0 → (⊥‘{𝐵}) = (⊥‘{0}))
1413fveq2d 6862 . . . . . 6 (𝐵 = 0 → (⊥‘(⊥‘{𝐵})) = (⊥‘(⊥‘{0})))
1514eleq2d 2814 . . . . 5 (𝐵 = 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 ∈ (⊥‘(⊥‘{0}))))
1611, 15bitr4id 290 . . . 4 (𝐵 = 0 → (𝐴 = (0 · 𝐵) ↔ 𝐴 ∈ (⊥‘(⊥‘{𝐵}))))
17 0cn 11166 . . . . 5 0 ∈ ℂ
18 oveq1 7394 . . . . . 6 (𝑥 = 0 → (𝑥 · 𝐵) = (0 · 𝐵))
1918rspceeqv 3611 . . . . 5 ((0 ∈ ℂ ∧ 𝐴 = (0 · 𝐵)) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵))
2017, 19mpan 690 . . . 4 (𝐴 = (0 · 𝐵) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵))
2116, 20biimtrrdi 254 . . 3 (𝐵 = 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵)))
221, 7h1de2bi 31483 . . . 4 (𝐵 ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)))
23 his6 31028 . . . . . . . . 9 (𝐵 ∈ ℋ → ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0))
247, 23ax-mp 5 . . . . . . . 8 ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0)
2524necon3bii 2977 . . . . . . 7 ((𝐵 ·ih 𝐵) ≠ 0 ↔ 𝐵 ≠ 0)
261, 7hicli 31010 . . . . . . . 8 (𝐴 ·ih 𝐵) ∈ ℂ
277, 7hicli 31010 . . . . . . . 8 (𝐵 ·ih 𝐵) ∈ ℂ
2826, 27divclzi 11917 . . . . . . 7 ((𝐵 ·ih 𝐵) ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ)
2925, 28sylbir 235 . . . . . 6 (𝐵 ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ)
30 oveq1 7394 . . . . . . 7 (𝑥 = ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) → (𝑥 · 𝐵) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵))
3130rspceeqv 3611 . . . . . 6 ((((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵))
3229, 31sylan 580 . . . . 5 ((𝐵 ≠ 0𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵)) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵))
3332ex 412 . . . 4 (𝐵 ≠ 0 → (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) · 𝐵) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵)))
3422, 33sylbid 240 . . 3 (𝐵 ≠ 0 → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵)))
3521, 34pm2.61ine 3008 . 2 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵))
36 snssi 4772 . . . . . . . 8 (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ)
37 occl 31233 . . . . . . . 8 ({𝐵} ⊆ ℋ → (⊥‘{𝐵}) ∈ C )
387, 36, 37mp2b 10 . . . . . . 7 (⊥‘{𝐵}) ∈ C
3938choccli 31236 . . . . . 6 (⊥‘(⊥‘{𝐵})) ∈ C
4039chshii 31156 . . . . 5 (⊥‘(⊥‘{𝐵})) ∈ S
41 h1did 31480 . . . . . 6 (𝐵 ∈ ℋ → 𝐵 ∈ (⊥‘(⊥‘{𝐵})))
427, 41ax-mp 5 . . . . 5 𝐵 ∈ (⊥‘(⊥‘{𝐵}))
43 shmulcl 31147 . . . . 5 (((⊥‘(⊥‘{𝐵})) ∈ S𝑥 ∈ ℂ ∧ 𝐵 ∈ (⊥‘(⊥‘{𝐵}))) → (𝑥 · 𝐵) ∈ (⊥‘(⊥‘{𝐵})))
4440, 42, 43mp3an13 1454 . . . 4 (𝑥 ∈ ℂ → (𝑥 · 𝐵) ∈ (⊥‘(⊥‘{𝐵})))
45 eleq1 2816 . . . 4 (𝐴 = (𝑥 · 𝐵) → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ (𝑥 · 𝐵) ∈ (⊥‘(⊥‘{𝐵}))))
4644, 45syl5ibrcom 247 . . 3 (𝑥 ∈ ℂ → (𝐴 = (𝑥 · 𝐵) → 𝐴 ∈ (⊥‘(⊥‘{𝐵}))))
4746rexlimiv 3127 . 2 (∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵) → 𝐴 ∈ (⊥‘(⊥‘{𝐵})))
4835, 47impbii 209 1 (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∃𝑥 ∈ ℂ 𝐴 = (𝑥 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925  wrex 3053  wss 3914  {csn 4589  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068   / cdiv 11835  chba 30848   · csm 30850   ·ih csp 30851  0c0v 30853   S csh 30857   C cch 30858  cort 30859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148  ax-hilex 30928  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvmulass 30936  ax-hvdistr1 30937  ax-hvdistr2 30938  ax-hvmul0 30939  ax-hfi 31008  ax-his1 31011  ax-his2 31012  ax-his3 31013  ax-his4 31014  ax-hcompl 31131
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-cn 23114  df-cnp 23115  df-lm 23116  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cfil 25155  df-cau 25156  df-cmet 25157  df-grpo 30422  df-gid 30423  df-ginv 30424  df-gdiv 30425  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-vs 30528  df-nmcv 30529  df-ims 30530  df-dip 30630  df-ssp 30651  df-ph 30742  df-cbn 30792  df-hnorm 30897  df-hba 30898  df-hvsub 30900  df-hlim 30901  df-hcau 30902  df-sh 31136  df-ch 31150  df-oc 31181  df-ch0 31182
This theorem is referenced by:  h1de2ci  31485
  Copyright terms: Public domain W3C validator