Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > h1de2ctlem | Structured version Visualization version GIF version |
Description: Lemma for h1de2ci 29914. (Contributed by NM, 19-Jul-2001.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h1de2.1 | ⊢ 𝐴 ∈ ℋ |
h1de2.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
h1de2ctlem | ⊢ (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h1de2.1 | . . . . . . . 8 ⊢ 𝐴 ∈ ℋ | |
2 | 1 | elexi 3450 | . . . . . . 7 ⊢ 𝐴 ∈ V |
3 | 2 | elsn 4582 | . . . . . 6 ⊢ (𝐴 ∈ {0ℎ} ↔ 𝐴 = 0ℎ) |
4 | hsn0elch 29606 | . . . . . . . 8 ⊢ {0ℎ} ∈ Cℋ | |
5 | 4 | ococi 29763 | . . . . . . 7 ⊢ (⊥‘(⊥‘{0ℎ})) = {0ℎ} |
6 | 5 | eleq2i 2832 | . . . . . 6 ⊢ (𝐴 ∈ (⊥‘(⊥‘{0ℎ})) ↔ 𝐴 ∈ {0ℎ}) |
7 | h1de2.2 | . . . . . . . 8 ⊢ 𝐵 ∈ ℋ | |
8 | ax-hvmul0 29368 | . . . . . . . 8 ⊢ (𝐵 ∈ ℋ → (0 ·ℎ 𝐵) = 0ℎ) | |
9 | 7, 8 | ax-mp 5 | . . . . . . 7 ⊢ (0 ·ℎ 𝐵) = 0ℎ |
10 | 9 | eqeq2i 2753 | . . . . . 6 ⊢ (𝐴 = (0 ·ℎ 𝐵) ↔ 𝐴 = 0ℎ) |
11 | 3, 6, 10 | 3bitr4ri 304 | . . . . 5 ⊢ (𝐴 = (0 ·ℎ 𝐵) ↔ 𝐴 ∈ (⊥‘(⊥‘{0ℎ}))) |
12 | sneq 4577 | . . . . . . . 8 ⊢ (𝐵 = 0ℎ → {𝐵} = {0ℎ}) | |
13 | 12 | fveq2d 6775 | . . . . . . 7 ⊢ (𝐵 = 0ℎ → (⊥‘{𝐵}) = (⊥‘{0ℎ})) |
14 | 13 | fveq2d 6775 | . . . . . 6 ⊢ (𝐵 = 0ℎ → (⊥‘(⊥‘{𝐵})) = (⊥‘(⊥‘{0ℎ}))) |
15 | 14 | eleq2d 2826 | . . . . 5 ⊢ (𝐵 = 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 ∈ (⊥‘(⊥‘{0ℎ})))) |
16 | 11, 15 | bitr4id 290 | . . . 4 ⊢ (𝐵 = 0ℎ → (𝐴 = (0 ·ℎ 𝐵) ↔ 𝐴 ∈ (⊥‘(⊥‘{𝐵})))) |
17 | 0cn 10968 | . . . . 5 ⊢ 0 ∈ ℂ | |
18 | oveq1 7278 | . . . . . 6 ⊢ (𝑥 = 0 → (𝑥 ·ℎ 𝐵) = (0 ·ℎ 𝐵)) | |
19 | 18 | rspceeqv 3576 | . . . . 5 ⊢ ((0 ∈ ℂ ∧ 𝐴 = (0 ·ℎ 𝐵)) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
20 | 17, 19 | mpan 687 | . . . 4 ⊢ (𝐴 = (0 ·ℎ 𝐵) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
21 | 16, 20 | syl6bir 253 | . . 3 ⊢ (𝐵 = 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵))) |
22 | 1, 7 | h1de2bi 29912 | . . . 4 ⊢ (𝐵 ≠ 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
23 | his6 29457 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℋ → ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0ℎ)) | |
24 | 7, 23 | ax-mp 5 | . . . . . . . 8 ⊢ ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0ℎ) |
25 | 24 | necon3bii 2998 | . . . . . . 7 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 ↔ 𝐵 ≠ 0ℎ) |
26 | 1, 7 | hicli 29439 | . . . . . . . 8 ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
27 | 7, 7 | hicli 29439 | . . . . . . . 8 ⊢ (𝐵 ·ih 𝐵) ∈ ℂ |
28 | 26, 27 | divclzi 11710 | . . . . . . 7 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ) |
29 | 25, 28 | sylbir 234 | . . . . . 6 ⊢ (𝐵 ≠ 0ℎ → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ) |
30 | oveq1 7278 | . . . . . . 7 ⊢ (𝑥 = ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) → (𝑥 ·ℎ 𝐵) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) | |
31 | 30 | rspceeqv 3576 | . . . . . 6 ⊢ ((((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
32 | 29, 31 | sylan 580 | . . . . 5 ⊢ ((𝐵 ≠ 0ℎ ∧ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
33 | 32 | ex 413 | . . . 4 ⊢ (𝐵 ≠ 0ℎ → (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵))) |
34 | 22, 33 | sylbid 239 | . . 3 ⊢ (𝐵 ≠ 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵))) |
35 | 21, 34 | pm2.61ine 3030 | . 2 ⊢ (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
36 | snssi 4747 | . . . . . . . 8 ⊢ (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ) | |
37 | occl 29662 | . . . . . . . 8 ⊢ ({𝐵} ⊆ ℋ → (⊥‘{𝐵}) ∈ Cℋ ) | |
38 | 7, 36, 37 | mp2b 10 | . . . . . . 7 ⊢ (⊥‘{𝐵}) ∈ Cℋ |
39 | 38 | choccli 29665 | . . . . . 6 ⊢ (⊥‘(⊥‘{𝐵})) ∈ Cℋ |
40 | 39 | chshii 29585 | . . . . 5 ⊢ (⊥‘(⊥‘{𝐵})) ∈ Sℋ |
41 | h1did 29909 | . . . . . 6 ⊢ (𝐵 ∈ ℋ → 𝐵 ∈ (⊥‘(⊥‘{𝐵}))) | |
42 | 7, 41 | ax-mp 5 | . . . . 5 ⊢ 𝐵 ∈ (⊥‘(⊥‘{𝐵})) |
43 | shmulcl 29576 | . . . . 5 ⊢ (((⊥‘(⊥‘{𝐵})) ∈ Sℋ ∧ 𝑥 ∈ ℂ ∧ 𝐵 ∈ (⊥‘(⊥‘{𝐵}))) → (𝑥 ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵}))) | |
44 | 40, 42, 43 | mp3an13 1451 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵}))) |
45 | eleq1 2828 | . . . 4 ⊢ (𝐴 = (𝑥 ·ℎ 𝐵) → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ (𝑥 ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵})))) | |
46 | 44, 45 | syl5ibrcom 246 | . . 3 ⊢ (𝑥 ∈ ℂ → (𝐴 = (𝑥 ·ℎ 𝐵) → 𝐴 ∈ (⊥‘(⊥‘{𝐵})))) |
47 | 46 | rexlimiv 3211 | . 2 ⊢ (∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵) → 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) |
48 | 35, 47 | impbii 208 | 1 ⊢ (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ∃wrex 3067 ⊆ wss 3892 {csn 4567 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 0cc0 10872 / cdiv 11632 ℋchba 29277 ·ℎ csm 29279 ·ih csp 29280 0ℎc0v 29282 Sℋ csh 29286 Cℋ cch 29287 ⊥cort 29288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 ax-cc 10192 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 ax-addf 10951 ax-mulf 10952 ax-hilex 29357 ax-hfvadd 29358 ax-hvcom 29359 ax-hvass 29360 ax-hv0cl 29361 ax-hvaddid 29362 ax-hfvmul 29363 ax-hvmulid 29364 ax-hvmulass 29365 ax-hvdistr1 29366 ax-hvdistr2 29367 ax-hvmul0 29368 ax-hfi 29437 ax-his1 29440 ax-his2 29441 ax-his3 29442 ax-his4 29443 ax-hcompl 29560 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-of 7527 df-om 7707 df-1st 7824 df-2nd 7825 df-supp 7969 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-2o 8289 df-oadd 8292 df-omul 8293 df-er 8481 df-map 8600 df-pm 8601 df-ixp 8669 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-fsupp 9107 df-fi 9148 df-sup 9179 df-inf 9180 df-oi 9247 df-card 9698 df-acn 9701 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-q 12688 df-rp 12730 df-xneg 12847 df-xadd 12848 df-xmul 12849 df-ioo 13082 df-ico 13084 df-icc 13085 df-fz 13239 df-fzo 13382 df-fl 13510 df-seq 13720 df-exp 13781 df-hash 14043 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-clim 15195 df-rlim 15196 df-sum 15396 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-starv 16975 df-sca 16976 df-vsca 16977 df-ip 16978 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-hom 16984 df-cco 16985 df-rest 17131 df-topn 17132 df-0g 17150 df-gsum 17151 df-topgen 17152 df-pt 17153 df-prds 17156 df-xrs 17211 df-qtop 17216 df-imas 17217 df-xps 17219 df-mre 17293 df-mrc 17294 df-acs 17296 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-submnd 18429 df-mulg 18699 df-cntz 18921 df-cmn 19386 df-psmet 20587 df-xmet 20588 df-met 20589 df-bl 20590 df-mopn 20591 df-fbas 20592 df-fg 20593 df-cnfld 20596 df-top 22041 df-topon 22058 df-topsp 22080 df-bases 22094 df-cld 22168 df-ntr 22169 df-cls 22170 df-nei 22247 df-cn 22376 df-cnp 22377 df-lm 22378 df-haus 22464 df-tx 22711 df-hmeo 22904 df-fil 22995 df-fm 23087 df-flim 23088 df-flf 23089 df-xms 23471 df-ms 23472 df-tms 23473 df-cfil 24417 df-cau 24418 df-cmet 24419 df-grpo 28851 df-gid 28852 df-ginv 28853 df-gdiv 28854 df-ablo 28903 df-vc 28917 df-nv 28950 df-va 28953 df-ba 28954 df-sm 28955 df-0v 28956 df-vs 28957 df-nmcv 28958 df-ims 28959 df-dip 29059 df-ssp 29080 df-ph 29171 df-cbn 29221 df-hnorm 29326 df-hba 29327 df-hvsub 29329 df-hlim 29330 df-hcau 29331 df-sh 29565 df-ch 29579 df-oc 29610 df-ch0 29611 |
This theorem is referenced by: h1de2ci 29914 |
Copyright terms: Public domain | W3C validator |