![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > h1de2ctlem | Structured version Visualization version GIF version |
Description: Lemma for h1de2ci 28940. (Contributed by NM, 19-Jul-2001.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h1de2.1 | ⊢ 𝐴 ∈ ℋ |
h1de2.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
h1de2ctlem | ⊢ (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4378 | . . . . . . . 8 ⊢ (𝐵 = 0ℎ → {𝐵} = {0ℎ}) | |
2 | 1 | fveq2d 6415 | . . . . . . 7 ⊢ (𝐵 = 0ℎ → (⊥‘{𝐵}) = (⊥‘{0ℎ})) |
3 | 2 | fveq2d 6415 | . . . . . 6 ⊢ (𝐵 = 0ℎ → (⊥‘(⊥‘{𝐵})) = (⊥‘(⊥‘{0ℎ}))) |
4 | 3 | eleq2d 2864 | . . . . 5 ⊢ (𝐵 = 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 ∈ (⊥‘(⊥‘{0ℎ})))) |
5 | h1de2.1 | . . . . . . . 8 ⊢ 𝐴 ∈ ℋ | |
6 | 5 | elexi 3401 | . . . . . . 7 ⊢ 𝐴 ∈ V |
7 | 6 | elsn 4383 | . . . . . 6 ⊢ (𝐴 ∈ {0ℎ} ↔ 𝐴 = 0ℎ) |
8 | hsn0elch 28630 | . . . . . . . 8 ⊢ {0ℎ} ∈ Cℋ | |
9 | 8 | ococi 28789 | . . . . . . 7 ⊢ (⊥‘(⊥‘{0ℎ})) = {0ℎ} |
10 | 9 | eleq2i 2870 | . . . . . 6 ⊢ (𝐴 ∈ (⊥‘(⊥‘{0ℎ})) ↔ 𝐴 ∈ {0ℎ}) |
11 | h1de2.2 | . . . . . . . 8 ⊢ 𝐵 ∈ ℋ | |
12 | ax-hvmul0 28392 | . . . . . . . 8 ⊢ (𝐵 ∈ ℋ → (0 ·ℎ 𝐵) = 0ℎ) | |
13 | 11, 12 | ax-mp 5 | . . . . . . 7 ⊢ (0 ·ℎ 𝐵) = 0ℎ |
14 | 13 | eqeq2i 2811 | . . . . . 6 ⊢ (𝐴 = (0 ·ℎ 𝐵) ↔ 𝐴 = 0ℎ) |
15 | 7, 10, 14 | 3bitr4ri 296 | . . . . 5 ⊢ (𝐴 = (0 ·ℎ 𝐵) ↔ 𝐴 ∈ (⊥‘(⊥‘{0ℎ}))) |
16 | 4, 15 | syl6rbbr 282 | . . . 4 ⊢ (𝐵 = 0ℎ → (𝐴 = (0 ·ℎ 𝐵) ↔ 𝐴 ∈ (⊥‘(⊥‘{𝐵})))) |
17 | 0cn 10320 | . . . . 5 ⊢ 0 ∈ ℂ | |
18 | oveq1 6885 | . . . . . 6 ⊢ (𝑥 = 0 → (𝑥 ·ℎ 𝐵) = (0 ·ℎ 𝐵)) | |
19 | 18 | rspceeqv 3515 | . . . . 5 ⊢ ((0 ∈ ℂ ∧ 𝐴 = (0 ·ℎ 𝐵)) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
20 | 17, 19 | mpan 682 | . . . 4 ⊢ (𝐴 = (0 ·ℎ 𝐵) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
21 | 16, 20 | syl6bir 246 | . . 3 ⊢ (𝐵 = 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵))) |
22 | 5, 11 | h1de2bi 28938 | . . . 4 ⊢ (𝐵 ≠ 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
23 | his6 28481 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℋ → ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0ℎ)) | |
24 | 11, 23 | ax-mp 5 | . . . . . . . 8 ⊢ ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0ℎ) |
25 | 24 | necon3bii 3023 | . . . . . . 7 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 ↔ 𝐵 ≠ 0ℎ) |
26 | 5, 11 | hicli 28463 | . . . . . . . 8 ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
27 | 11, 11 | hicli 28463 | . . . . . . . 8 ⊢ (𝐵 ·ih 𝐵) ∈ ℂ |
28 | 26, 27 | divclzi 11052 | . . . . . . 7 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ) |
29 | 25, 28 | sylbir 227 | . . . . . 6 ⊢ (𝐵 ≠ 0ℎ → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ) |
30 | oveq1 6885 | . . . . . . 7 ⊢ (𝑥 = ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) → (𝑥 ·ℎ 𝐵) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) | |
31 | 30 | rspceeqv 3515 | . . . . . 6 ⊢ ((((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
32 | 29, 31 | sylan 576 | . . . . 5 ⊢ ((𝐵 ≠ 0ℎ ∧ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
33 | 32 | ex 402 | . . . 4 ⊢ (𝐵 ≠ 0ℎ → (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵))) |
34 | 22, 33 | sylbid 232 | . . 3 ⊢ (𝐵 ≠ 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵))) |
35 | 21, 34 | pm2.61ine 3054 | . 2 ⊢ (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
36 | snssi 4527 | . . . . . . . 8 ⊢ (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ) | |
37 | occl 28688 | . . . . . . . 8 ⊢ ({𝐵} ⊆ ℋ → (⊥‘{𝐵}) ∈ Cℋ ) | |
38 | 11, 36, 37 | mp2b 10 | . . . . . . 7 ⊢ (⊥‘{𝐵}) ∈ Cℋ |
39 | 38 | choccli 28691 | . . . . . 6 ⊢ (⊥‘(⊥‘{𝐵})) ∈ Cℋ |
40 | 39 | chshii 28609 | . . . . 5 ⊢ (⊥‘(⊥‘{𝐵})) ∈ Sℋ |
41 | h1did 28935 | . . . . . 6 ⊢ (𝐵 ∈ ℋ → 𝐵 ∈ (⊥‘(⊥‘{𝐵}))) | |
42 | 11, 41 | ax-mp 5 | . . . . 5 ⊢ 𝐵 ∈ (⊥‘(⊥‘{𝐵})) |
43 | shmulcl 28600 | . . . . 5 ⊢ (((⊥‘(⊥‘{𝐵})) ∈ Sℋ ∧ 𝑥 ∈ ℂ ∧ 𝐵 ∈ (⊥‘(⊥‘{𝐵}))) → (𝑥 ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵}))) | |
44 | 40, 42, 43 | mp3an13 1577 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵}))) |
45 | eleq1 2866 | . . . 4 ⊢ (𝐴 = (𝑥 ·ℎ 𝐵) → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ (𝑥 ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵})))) | |
46 | 44, 45 | syl5ibrcom 239 | . . 3 ⊢ (𝑥 ∈ ℂ → (𝐴 = (𝑥 ·ℎ 𝐵) → 𝐴 ∈ (⊥‘(⊥‘{𝐵})))) |
47 | 46 | rexlimiv 3208 | . 2 ⊢ (∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵) → 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) |
48 | 35, 47 | impbii 201 | 1 ⊢ (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ∃wrex 3090 ⊆ wss 3769 {csn 4368 ‘cfv 6101 (class class class)co 6878 ℂcc 10222 0cc0 10224 / cdiv 10976 ℋchba 28301 ·ℎ csm 28303 ·ih csp 28304 0ℎc0v 28306 Sℋ csh 28310 Cℋ cch 28311 ⊥cort 28312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cc 9545 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 ax-addf 10303 ax-mulf 10304 ax-hilex 28381 ax-hfvadd 28382 ax-hvcom 28383 ax-hvass 28384 ax-hv0cl 28385 ax-hvaddid 28386 ax-hfvmul 28387 ax-hvmulid 28388 ax-hvmulass 28389 ax-hvdistr1 28390 ax-hvdistr2 28391 ax-hvmul0 28392 ax-hfi 28461 ax-his1 28464 ax-his2 28465 ax-his3 28466 ax-his4 28467 ax-hcompl 28584 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-om 7300 df-1st 7401 df-2nd 7402 df-supp 7533 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-omul 7804 df-er 7982 df-map 8097 df-pm 8098 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fsupp 8518 df-fi 8559 df-sup 8590 df-inf 8591 df-oi 8657 df-card 9051 df-acn 9054 df-cda 9278 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-q 12034 df-rp 12075 df-xneg 12193 df-xadd 12194 df-xmul 12195 df-ioo 12428 df-ico 12430 df-icc 12431 df-fz 12581 df-fzo 12721 df-fl 12848 df-seq 13056 df-exp 13115 df-hash 13371 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-clim 14560 df-rlim 14561 df-sum 14758 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-starv 16282 df-sca 16283 df-vsca 16284 df-ip 16285 df-tset 16286 df-ple 16287 df-ds 16289 df-unif 16290 df-hom 16291 df-cco 16292 df-rest 16398 df-topn 16399 df-0g 16417 df-gsum 16418 df-topgen 16419 df-pt 16420 df-prds 16423 df-xrs 16477 df-qtop 16482 df-imas 16483 df-xps 16485 df-mre 16561 df-mrc 16562 df-acs 16564 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-submnd 17651 df-mulg 17857 df-cntz 18062 df-cmn 18510 df-psmet 20060 df-xmet 20061 df-met 20062 df-bl 20063 df-mopn 20064 df-fbas 20065 df-fg 20066 df-cnfld 20069 df-top 21027 df-topon 21044 df-topsp 21066 df-bases 21079 df-cld 21152 df-ntr 21153 df-cls 21154 df-nei 21231 df-cn 21360 df-cnp 21361 df-lm 21362 df-haus 21448 df-tx 21694 df-hmeo 21887 df-fil 21978 df-fm 22070 df-flim 22071 df-flf 22072 df-xms 22453 df-ms 22454 df-tms 22455 df-cfil 23381 df-cau 23382 df-cmet 23383 df-grpo 27873 df-gid 27874 df-ginv 27875 df-gdiv 27876 df-ablo 27925 df-vc 27939 df-nv 27972 df-va 27975 df-ba 27976 df-sm 27977 df-0v 27978 df-vs 27979 df-nmcv 27980 df-ims 27981 df-dip 28081 df-ssp 28102 df-ph 28193 df-cbn 28244 df-hnorm 28350 df-hba 28351 df-hvsub 28353 df-hlim 28354 df-hcau 28355 df-sh 28589 df-ch 28603 df-oc 28634 df-ch0 28635 |
This theorem is referenced by: h1de2ci 28940 |
Copyright terms: Public domain | W3C validator |