| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > h1de2ctlem | Structured version Visualization version GIF version | ||
| Description: Lemma for h1de2ci 31534. (Contributed by NM, 19-Jul-2001.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| h1de2.1 | ⊢ 𝐴 ∈ ℋ |
| h1de2.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| h1de2ctlem | ⊢ (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h1de2.1 | . . . . . . . 8 ⊢ 𝐴 ∈ ℋ | |
| 2 | 1 | elexi 3459 | . . . . . . 7 ⊢ 𝐴 ∈ V |
| 3 | 2 | elsn 4591 | . . . . . 6 ⊢ (𝐴 ∈ {0ℎ} ↔ 𝐴 = 0ℎ) |
| 4 | hsn0elch 31226 | . . . . . . . 8 ⊢ {0ℎ} ∈ Cℋ | |
| 5 | 4 | ococi 31383 | . . . . . . 7 ⊢ (⊥‘(⊥‘{0ℎ})) = {0ℎ} |
| 6 | 5 | eleq2i 2823 | . . . . . 6 ⊢ (𝐴 ∈ (⊥‘(⊥‘{0ℎ})) ↔ 𝐴 ∈ {0ℎ}) |
| 7 | h1de2.2 | . . . . . . . 8 ⊢ 𝐵 ∈ ℋ | |
| 8 | ax-hvmul0 30988 | . . . . . . . 8 ⊢ (𝐵 ∈ ℋ → (0 ·ℎ 𝐵) = 0ℎ) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . . 7 ⊢ (0 ·ℎ 𝐵) = 0ℎ |
| 10 | 9 | eqeq2i 2744 | . . . . . 6 ⊢ (𝐴 = (0 ·ℎ 𝐵) ↔ 𝐴 = 0ℎ) |
| 11 | 3, 6, 10 | 3bitr4ri 304 | . . . . 5 ⊢ (𝐴 = (0 ·ℎ 𝐵) ↔ 𝐴 ∈ (⊥‘(⊥‘{0ℎ}))) |
| 12 | sneq 4586 | . . . . . . . 8 ⊢ (𝐵 = 0ℎ → {𝐵} = {0ℎ}) | |
| 13 | 12 | fveq2d 6826 | . . . . . . 7 ⊢ (𝐵 = 0ℎ → (⊥‘{𝐵}) = (⊥‘{0ℎ})) |
| 14 | 13 | fveq2d 6826 | . . . . . 6 ⊢ (𝐵 = 0ℎ → (⊥‘(⊥‘{𝐵})) = (⊥‘(⊥‘{0ℎ}))) |
| 15 | 14 | eleq2d 2817 | . . . . 5 ⊢ (𝐵 = 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 ∈ (⊥‘(⊥‘{0ℎ})))) |
| 16 | 11, 15 | bitr4id 290 | . . . 4 ⊢ (𝐵 = 0ℎ → (𝐴 = (0 ·ℎ 𝐵) ↔ 𝐴 ∈ (⊥‘(⊥‘{𝐵})))) |
| 17 | 0cn 11104 | . . . . 5 ⊢ 0 ∈ ℂ | |
| 18 | oveq1 7353 | . . . . . 6 ⊢ (𝑥 = 0 → (𝑥 ·ℎ 𝐵) = (0 ·ℎ 𝐵)) | |
| 19 | 18 | rspceeqv 3600 | . . . . 5 ⊢ ((0 ∈ ℂ ∧ 𝐴 = (0 ·ℎ 𝐵)) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
| 20 | 17, 19 | mpan 690 | . . . 4 ⊢ (𝐴 = (0 ·ℎ 𝐵) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
| 21 | 16, 20 | biimtrrdi 254 | . . 3 ⊢ (𝐵 = 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵))) |
| 22 | 1, 7 | h1de2bi 31532 | . . . 4 ⊢ (𝐵 ≠ 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
| 23 | his6 31077 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℋ → ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0ℎ)) | |
| 24 | 7, 23 | ax-mp 5 | . . . . . . . 8 ⊢ ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0ℎ) |
| 25 | 24 | necon3bii 2980 | . . . . . . 7 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 ↔ 𝐵 ≠ 0ℎ) |
| 26 | 1, 7 | hicli 31059 | . . . . . . . 8 ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
| 27 | 7, 7 | hicli 31059 | . . . . . . . 8 ⊢ (𝐵 ·ih 𝐵) ∈ ℂ |
| 28 | 26, 27 | divclzi 11856 | . . . . . . 7 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ) |
| 29 | 25, 28 | sylbir 235 | . . . . . 6 ⊢ (𝐵 ≠ 0ℎ → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ) |
| 30 | oveq1 7353 | . . . . . . 7 ⊢ (𝑥 = ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) → (𝑥 ·ℎ 𝐵) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) | |
| 31 | 30 | rspceeqv 3600 | . . . . . 6 ⊢ ((((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
| 32 | 29, 31 | sylan 580 | . . . . 5 ⊢ ((𝐵 ≠ 0ℎ ∧ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
| 33 | 32 | ex 412 | . . . 4 ⊢ (𝐵 ≠ 0ℎ → (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵))) |
| 34 | 22, 33 | sylbid 240 | . . 3 ⊢ (𝐵 ≠ 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵))) |
| 35 | 21, 34 | pm2.61ine 3011 | . 2 ⊢ (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
| 36 | snssi 4760 | . . . . . . . 8 ⊢ (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ) | |
| 37 | occl 31282 | . . . . . . . 8 ⊢ ({𝐵} ⊆ ℋ → (⊥‘{𝐵}) ∈ Cℋ ) | |
| 38 | 7, 36, 37 | mp2b 10 | . . . . . . 7 ⊢ (⊥‘{𝐵}) ∈ Cℋ |
| 39 | 38 | choccli 31285 | . . . . . 6 ⊢ (⊥‘(⊥‘{𝐵})) ∈ Cℋ |
| 40 | 39 | chshii 31205 | . . . . 5 ⊢ (⊥‘(⊥‘{𝐵})) ∈ Sℋ |
| 41 | h1did 31529 | . . . . . 6 ⊢ (𝐵 ∈ ℋ → 𝐵 ∈ (⊥‘(⊥‘{𝐵}))) | |
| 42 | 7, 41 | ax-mp 5 | . . . . 5 ⊢ 𝐵 ∈ (⊥‘(⊥‘{𝐵})) |
| 43 | shmulcl 31196 | . . . . 5 ⊢ (((⊥‘(⊥‘{𝐵})) ∈ Sℋ ∧ 𝑥 ∈ ℂ ∧ 𝐵 ∈ (⊥‘(⊥‘{𝐵}))) → (𝑥 ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵}))) | |
| 44 | 40, 42, 43 | mp3an13 1454 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵}))) |
| 45 | eleq1 2819 | . . . 4 ⊢ (𝐴 = (𝑥 ·ℎ 𝐵) → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ (𝑥 ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵})))) | |
| 46 | 44, 45 | syl5ibrcom 247 | . . 3 ⊢ (𝑥 ∈ ℂ → (𝐴 = (𝑥 ·ℎ 𝐵) → 𝐴 ∈ (⊥‘(⊥‘{𝐵})))) |
| 47 | 46 | rexlimiv 3126 | . 2 ⊢ (∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵) → 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) |
| 48 | 35, 47 | impbii 209 | 1 ⊢ (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ⊆ wss 3902 {csn 4576 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 / cdiv 11774 ℋchba 30897 ·ℎ csm 30899 ·ih csp 30900 0ℎc0v 30902 Sℋ csh 30906 Cℋ cch 30907 ⊥cort 30908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cc 10326 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 ax-hilex 30977 ax-hfvadd 30978 ax-hvcom 30979 ax-hvass 30980 ax-hv0cl 30981 ax-hvaddid 30982 ax-hfvmul 30983 ax-hvmulid 30984 ax-hvmulass 30985 ax-hvdistr1 30986 ax-hvdistr2 30987 ax-hvmul0 30988 ax-hfi 31057 ax-his1 31060 ax-his2 31061 ax-his3 31062 ax-his4 31063 ax-hcompl 31180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19230 df-cmn 19695 df-psmet 21284 df-xmet 21285 df-met 21286 df-bl 21287 df-mopn 21288 df-fbas 21289 df-fg 21290 df-cnfld 21293 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-cn 23143 df-cnp 23144 df-lm 23145 df-haus 23231 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cfil 25183 df-cau 25184 df-cmet 25185 df-grpo 30471 df-gid 30472 df-ginv 30473 df-gdiv 30474 df-ablo 30523 df-vc 30537 df-nv 30570 df-va 30573 df-ba 30574 df-sm 30575 df-0v 30576 df-vs 30577 df-nmcv 30578 df-ims 30579 df-dip 30679 df-ssp 30700 df-ph 30791 df-cbn 30841 df-hnorm 30946 df-hba 30947 df-hvsub 30949 df-hlim 30950 df-hcau 30951 df-sh 31185 df-ch 31199 df-oc 31230 df-ch0 31231 |
| This theorem is referenced by: h1de2ci 31534 |
| Copyright terms: Public domain | W3C validator |