![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > h1de2ctlem | Structured version Visualization version GIF version |
Description: Lemma for h1de2ci 31588. (Contributed by NM, 19-Jul-2001.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h1de2.1 | ⊢ 𝐴 ∈ ℋ |
h1de2.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
h1de2ctlem | ⊢ (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h1de2.1 | . . . . . . . 8 ⊢ 𝐴 ∈ ℋ | |
2 | 1 | elexi 3511 | . . . . . . 7 ⊢ 𝐴 ∈ V |
3 | 2 | elsn 4663 | . . . . . 6 ⊢ (𝐴 ∈ {0ℎ} ↔ 𝐴 = 0ℎ) |
4 | hsn0elch 31280 | . . . . . . . 8 ⊢ {0ℎ} ∈ Cℋ | |
5 | 4 | ococi 31437 | . . . . . . 7 ⊢ (⊥‘(⊥‘{0ℎ})) = {0ℎ} |
6 | 5 | eleq2i 2836 | . . . . . 6 ⊢ (𝐴 ∈ (⊥‘(⊥‘{0ℎ})) ↔ 𝐴 ∈ {0ℎ}) |
7 | h1de2.2 | . . . . . . . 8 ⊢ 𝐵 ∈ ℋ | |
8 | ax-hvmul0 31042 | . . . . . . . 8 ⊢ (𝐵 ∈ ℋ → (0 ·ℎ 𝐵) = 0ℎ) | |
9 | 7, 8 | ax-mp 5 | . . . . . . 7 ⊢ (0 ·ℎ 𝐵) = 0ℎ |
10 | 9 | eqeq2i 2753 | . . . . . 6 ⊢ (𝐴 = (0 ·ℎ 𝐵) ↔ 𝐴 = 0ℎ) |
11 | 3, 6, 10 | 3bitr4ri 304 | . . . . 5 ⊢ (𝐴 = (0 ·ℎ 𝐵) ↔ 𝐴 ∈ (⊥‘(⊥‘{0ℎ}))) |
12 | sneq 4658 | . . . . . . . 8 ⊢ (𝐵 = 0ℎ → {𝐵} = {0ℎ}) | |
13 | 12 | fveq2d 6924 | . . . . . . 7 ⊢ (𝐵 = 0ℎ → (⊥‘{𝐵}) = (⊥‘{0ℎ})) |
14 | 13 | fveq2d 6924 | . . . . . 6 ⊢ (𝐵 = 0ℎ → (⊥‘(⊥‘{𝐵})) = (⊥‘(⊥‘{0ℎ}))) |
15 | 14 | eleq2d 2830 | . . . . 5 ⊢ (𝐵 = 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 ∈ (⊥‘(⊥‘{0ℎ})))) |
16 | 11, 15 | bitr4id 290 | . . . 4 ⊢ (𝐵 = 0ℎ → (𝐴 = (0 ·ℎ 𝐵) ↔ 𝐴 ∈ (⊥‘(⊥‘{𝐵})))) |
17 | 0cn 11282 | . . . . 5 ⊢ 0 ∈ ℂ | |
18 | oveq1 7455 | . . . . . 6 ⊢ (𝑥 = 0 → (𝑥 ·ℎ 𝐵) = (0 ·ℎ 𝐵)) | |
19 | 18 | rspceeqv 3658 | . . . . 5 ⊢ ((0 ∈ ℂ ∧ 𝐴 = (0 ·ℎ 𝐵)) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
20 | 17, 19 | mpan 689 | . . . 4 ⊢ (𝐴 = (0 ·ℎ 𝐵) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
21 | 16, 20 | biimtrrdi 254 | . . 3 ⊢ (𝐵 = 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵))) |
22 | 1, 7 | h1de2bi 31586 | . . . 4 ⊢ (𝐵 ≠ 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵))) |
23 | his6 31131 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℋ → ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0ℎ)) | |
24 | 7, 23 | ax-mp 5 | . . . . . . . 8 ⊢ ((𝐵 ·ih 𝐵) = 0 ↔ 𝐵 = 0ℎ) |
25 | 24 | necon3bii 2999 | . . . . . . 7 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 ↔ 𝐵 ≠ 0ℎ) |
26 | 1, 7 | hicli 31113 | . . . . . . . 8 ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
27 | 7, 7 | hicli 31113 | . . . . . . . 8 ⊢ (𝐵 ·ih 𝐵) ∈ ℂ |
28 | 26, 27 | divclzi 12029 | . . . . . . 7 ⊢ ((𝐵 ·ih 𝐵) ≠ 0 → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ) |
29 | 25, 28 | sylbir 235 | . . . . . 6 ⊢ (𝐵 ≠ 0ℎ → ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ) |
30 | oveq1 7455 | . . . . . . 7 ⊢ (𝑥 = ((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) → (𝑥 ·ℎ 𝐵) = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) | |
31 | 30 | rspceeqv 3658 | . . . . . 6 ⊢ ((((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ∈ ℂ ∧ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
32 | 29, 31 | sylan 579 | . . . . 5 ⊢ ((𝐵 ≠ 0ℎ ∧ 𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵)) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
33 | 32 | ex 412 | . . . 4 ⊢ (𝐵 ≠ 0ℎ → (𝐴 = (((𝐴 ·ih 𝐵) / (𝐵 ·ih 𝐵)) ·ℎ 𝐵) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵))) |
34 | 22, 33 | sylbid 240 | . . 3 ⊢ (𝐵 ≠ 0ℎ → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵))) |
35 | 21, 34 | pm2.61ine 3031 | . 2 ⊢ (𝐴 ∈ (⊥‘(⊥‘{𝐵})) → ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
36 | snssi 4833 | . . . . . . . 8 ⊢ (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ) | |
37 | occl 31336 | . . . . . . . 8 ⊢ ({𝐵} ⊆ ℋ → (⊥‘{𝐵}) ∈ Cℋ ) | |
38 | 7, 36, 37 | mp2b 10 | . . . . . . 7 ⊢ (⊥‘{𝐵}) ∈ Cℋ |
39 | 38 | choccli 31339 | . . . . . 6 ⊢ (⊥‘(⊥‘{𝐵})) ∈ Cℋ |
40 | 39 | chshii 31259 | . . . . 5 ⊢ (⊥‘(⊥‘{𝐵})) ∈ Sℋ |
41 | h1did 31583 | . . . . . 6 ⊢ (𝐵 ∈ ℋ → 𝐵 ∈ (⊥‘(⊥‘{𝐵}))) | |
42 | 7, 41 | ax-mp 5 | . . . . 5 ⊢ 𝐵 ∈ (⊥‘(⊥‘{𝐵})) |
43 | shmulcl 31250 | . . . . 5 ⊢ (((⊥‘(⊥‘{𝐵})) ∈ Sℋ ∧ 𝑥 ∈ ℂ ∧ 𝐵 ∈ (⊥‘(⊥‘{𝐵}))) → (𝑥 ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵}))) | |
44 | 40, 42, 43 | mp3an13 1452 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵}))) |
45 | eleq1 2832 | . . . 4 ⊢ (𝐴 = (𝑥 ·ℎ 𝐵) → (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ (𝑥 ·ℎ 𝐵) ∈ (⊥‘(⊥‘{𝐵})))) | |
46 | 44, 45 | syl5ibrcom 247 | . . 3 ⊢ (𝑥 ∈ ℂ → (𝐴 = (𝑥 ·ℎ 𝐵) → 𝐴 ∈ (⊥‘(⊥‘{𝐵})))) |
47 | 46 | rexlimiv 3154 | . 2 ⊢ (∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵) → 𝐴 ∈ (⊥‘(⊥‘{𝐵}))) |
48 | 35, 47 | impbii 209 | 1 ⊢ (𝐴 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∃𝑥 ∈ ℂ 𝐴 = (𝑥 ·ℎ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 ⊆ wss 3976 {csn 4648 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 / cdiv 11947 ℋchba 30951 ·ℎ csm 30953 ·ih csp 30954 0ℎc0v 30956 Sℋ csh 30960 Cℋ cch 30961 ⊥cort 30962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 ax-hilex 31031 ax-hfvadd 31032 ax-hvcom 31033 ax-hvass 31034 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvmulass 31039 ax-hvdistr1 31040 ax-hvdistr2 31041 ax-hvmul0 31042 ax-hfi 31111 ax-his1 31114 ax-his2 31115 ax-his3 31116 ax-his4 31117 ax-hcompl 31234 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-cn 23256 df-cnp 23257 df-lm 23258 df-haus 23344 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cfil 25308 df-cau 25309 df-cmet 25310 df-grpo 30525 df-gid 30526 df-ginv 30527 df-gdiv 30528 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-vs 30631 df-nmcv 30632 df-ims 30633 df-dip 30733 df-ssp 30754 df-ph 30845 df-cbn 30895 df-hnorm 31000 df-hba 31001 df-hvsub 31003 df-hlim 31004 df-hcau 31005 df-sh 31239 df-ch 31253 df-oc 31284 df-ch0 31285 |
This theorem is referenced by: h1de2ci 31588 |
Copyright terms: Public domain | W3C validator |