Proof of Theorem hvmul0or
Step | Hyp | Ref
| Expression |
1 | | df-ne 2943 |
. . . . 5
⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0) |
2 | | oveq2 7263 |
. . . . . . . 8
⊢ ((𝐴
·ℎ 𝐵) = 0ℎ → ((1 / 𝐴)
·ℎ (𝐴 ·ℎ 𝐵)) = ((1 / 𝐴) ·ℎ
0ℎ)) |
3 | 2 | ad2antlr 723 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴
·ℎ 𝐵) = 0ℎ) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)
·ℎ (𝐴 ·ℎ 𝐵)) = ((1 / 𝐴) ·ℎ
0ℎ)) |
4 | | recid2 11578 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 𝐴) = 1) |
5 | 4 | oveq1d 7270 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴) ·ℎ 𝐵) = (1
·ℎ 𝐵)) |
6 | 5 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴) ·ℎ 𝐵) = (1
·ℎ 𝐵)) |
7 | | reccl 11570 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈
ℂ) |
8 | 7 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈
ℂ) |
9 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → 𝐴 ∈
ℂ) |
10 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → 𝐵 ∈
ℋ) |
11 | | ax-hvmulass 29270 |
. . . . . . . . . 10
⊢ (((1 /
𝐴) ∈ ℂ ∧
𝐴 ∈ ℂ ∧
𝐵 ∈ ℋ) →
(((1 / 𝐴) · 𝐴)
·ℎ 𝐵) = ((1 / 𝐴) ·ℎ (𝐴
·ℎ 𝐵))) |
12 | 8, 9, 10, 11 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴) ·ℎ 𝐵) = ((1 / 𝐴) ·ℎ (𝐴
·ℎ 𝐵))) |
13 | | ax-hvmulid 29269 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℋ → (1
·ℎ 𝐵) = 𝐵) |
14 | 13 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (1
·ℎ 𝐵) = 𝐵) |
15 | 6, 12, 14 | 3eqtr3d 2786 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)
·ℎ (𝐴 ·ℎ 𝐵)) = 𝐵) |
16 | 15 | adantlr 711 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴
·ℎ 𝐵) = 0ℎ) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)
·ℎ (𝐴 ·ℎ 𝐵)) = 𝐵) |
17 | | hvmul0 29287 |
. . . . . . . . . 10
⊢ ((1 /
𝐴) ∈ ℂ →
((1 / 𝐴)
·ℎ 0ℎ) =
0ℎ) |
18 | 7, 17 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴)
·ℎ 0ℎ) =
0ℎ) |
19 | 18 | adantlr 711 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)
·ℎ 0ℎ) =
0ℎ) |
20 | 19 | adantlr 711 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴
·ℎ 𝐵) = 0ℎ) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)
·ℎ 0ℎ) =
0ℎ) |
21 | 3, 16, 20 | 3eqtr3d 2786 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴
·ℎ 𝐵) = 0ℎ) ∧ 𝐴 ≠ 0) → 𝐵 =
0ℎ) |
22 | 21 | ex 412 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴
·ℎ 𝐵) = 0ℎ) → (𝐴 ≠ 0 → 𝐵 = 0ℎ)) |
23 | 1, 22 | syl5bir 242 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴
·ℎ 𝐵) = 0ℎ) → (¬
𝐴 = 0 → 𝐵 =
0ℎ)) |
24 | 23 | orrd 859 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴
·ℎ 𝐵) = 0ℎ) → (𝐴 = 0 ∨ 𝐵 = 0ℎ)) |
25 | 24 | ex 412 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴
·ℎ 𝐵) = 0ℎ → (𝐴 = 0 ∨ 𝐵 = 0ℎ))) |
26 | | ax-hvmul0 29273 |
. . . . 5
⊢ (𝐵 ∈ ℋ → (0
·ℎ 𝐵) = 0ℎ) |
27 | | oveq1 7262 |
. . . . . 6
⊢ (𝐴 = 0 → (𝐴 ·ℎ 𝐵) = (0
·ℎ 𝐵)) |
28 | 27 | eqeq1d 2740 |
. . . . 5
⊢ (𝐴 = 0 → ((𝐴 ·ℎ 𝐵) = 0ℎ ↔
(0 ·ℎ 𝐵) = 0ℎ)) |
29 | 26, 28 | syl5ibrcom 246 |
. . . 4
⊢ (𝐵 ∈ ℋ → (𝐴 = 0 → (𝐴 ·ℎ 𝐵) =
0ℎ)) |
30 | 29 | adantl 481 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 = 0 → (𝐴 ·ℎ 𝐵) =
0ℎ)) |
31 | | hvmul0 29287 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝐴
·ℎ 0ℎ) =
0ℎ) |
32 | | oveq2 7263 |
. . . . . 6
⊢ (𝐵 = 0ℎ →
(𝐴
·ℎ 𝐵) = (𝐴 ·ℎ
0ℎ)) |
33 | 32 | eqeq1d 2740 |
. . . . 5
⊢ (𝐵 = 0ℎ →
((𝐴
·ℎ 𝐵) = 0ℎ ↔ (𝐴
·ℎ 0ℎ) =
0ℎ)) |
34 | 31, 33 | syl5ibrcom 246 |
. . . 4
⊢ (𝐴 ∈ ℂ → (𝐵 = 0ℎ →
(𝐴
·ℎ 𝐵) = 0ℎ)) |
35 | 34 | adantr 480 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐵 = 0ℎ →
(𝐴
·ℎ 𝐵) = 0ℎ)) |
36 | 30, 35 | jaod 855 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 = 0 ∨ 𝐵 = 0ℎ) → (𝐴
·ℎ 𝐵) = 0ℎ)) |
37 | 25, 36 | impbid 211 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴
·ℎ 𝐵) = 0ℎ ↔ (𝐴 = 0 ∨ 𝐵 = 0ℎ))) |