HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmul0or Structured version   Visualization version   GIF version

Theorem hvmul0or 29288
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 19-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvmul0or ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)))

Proof of Theorem hvmul0or
StepHypRef Expression
1 df-ne 2943 . . . . 5 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
2 oveq2 7263 . . . . . . . 8 ((𝐴 · 𝐵) = 0 → ((1 / 𝐴) · (𝐴 · 𝐵)) = ((1 / 𝐴) · 0))
32ad2antlr 723 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · (𝐴 · 𝐵)) = ((1 / 𝐴) · 0))
4 recid2 11578 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 𝐴) = 1)
54oveq1d 7270 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴) · 𝐵) = (1 · 𝐵))
65adantlr 711 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴) · 𝐵) = (1 · 𝐵))
7 reccl 11570 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
87adantlr 711 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
9 simpll 763 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
10 simplr 765 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℋ)
11 ax-hvmulass 29270 . . . . . . . . . 10 (((1 / 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((1 / 𝐴) · 𝐴) · 𝐵) = ((1 / 𝐴) · (𝐴 · 𝐵)))
128, 9, 10, 11syl3anc 1369 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴) · 𝐵) = ((1 / 𝐴) · (𝐴 · 𝐵)))
13 ax-hvmulid 29269 . . . . . . . . . 10 (𝐵 ∈ ℋ → (1 · 𝐵) = 𝐵)
1413ad2antlr 723 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (1 · 𝐵) = 𝐵)
156, 12, 143eqtr3d 2786 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · (𝐴 · 𝐵)) = 𝐵)
1615adantlr 711 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · (𝐴 · 𝐵)) = 𝐵)
17 hvmul0 29287 . . . . . . . . . 10 ((1 / 𝐴) ∈ ℂ → ((1 / 𝐴) · 0) = 0)
187, 17syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 0) = 0)
1918adantlr 711 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 0) = 0)
2019adantlr 711 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 0) = 0)
213, 16, 203eqtr3d 2786 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → 𝐵 = 0)
2221ex 412 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) → (𝐴 ≠ 0 → 𝐵 = 0))
231, 22syl5bir 242 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) → (¬ 𝐴 = 0 → 𝐵 = 0))
2423orrd 859 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) → (𝐴 = 0 ∨ 𝐵 = 0))
2524ex 412 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) = 0 → (𝐴 = 0 ∨ 𝐵 = 0)))
26 ax-hvmul0 29273 . . . . 5 (𝐵 ∈ ℋ → (0 · 𝐵) = 0)
27 oveq1 7262 . . . . . 6 (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵))
2827eqeq1d 2740 . . . . 5 (𝐴 = 0 → ((𝐴 · 𝐵) = 0 ↔ (0 · 𝐵) = 0))
2926, 28syl5ibrcom 246 . . . 4 (𝐵 ∈ ℋ → (𝐴 = 0 → (𝐴 · 𝐵) = 0))
3029adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 = 0 → (𝐴 · 𝐵) = 0))
31 hvmul0 29287 . . . . 5 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
32 oveq2 7263 . . . . . 6 (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0))
3332eqeq1d 2740 . . . . 5 (𝐵 = 0 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 · 0) = 0))
3431, 33syl5ibrcom 246 . . . 4 (𝐴 ∈ ℂ → (𝐵 = 0 → (𝐴 · 𝐵) = 0))
3534adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐵 = 0 → (𝐴 · 𝐵) = 0))
3630, 35jaod 855 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 = 0 ∨ 𝐵 = 0) → (𝐴 · 𝐵) = 0))
3725, 36impbid 211 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   · cmul 10807   / cdiv 11562  chba 29182   · csm 29184  0c0v 29187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-hv0cl 29266  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvmul0 29273
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563
This theorem is referenced by:  hvmulcan  29335  hvmulcan2  29336  nmlnop0iALT  30258
  Copyright terms: Public domain W3C validator