HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmul0or Structured version   Visualization version   GIF version

Theorem hvmul0or 29967
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 19-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvmul0or ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)))

Proof of Theorem hvmul0or
StepHypRef Expression
1 df-ne 2944 . . . . 5 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
2 oveq2 7365 . . . . . . . 8 ((𝐴 · 𝐵) = 0 → ((1 / 𝐴) · (𝐴 · 𝐵)) = ((1 / 𝐴) · 0))
32ad2antlr 725 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · (𝐴 · 𝐵)) = ((1 / 𝐴) · 0))
4 recid2 11828 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 𝐴) = 1)
54oveq1d 7372 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴) · 𝐵) = (1 · 𝐵))
65adantlr 713 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴) · 𝐵) = (1 · 𝐵))
7 reccl 11820 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
87adantlr 713 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
9 simpll 765 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
10 simplr 767 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℋ)
11 ax-hvmulass 29949 . . . . . . . . . 10 (((1 / 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((1 / 𝐴) · 𝐴) · 𝐵) = ((1 / 𝐴) · (𝐴 · 𝐵)))
128, 9, 10, 11syl3anc 1371 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴) · 𝐵) = ((1 / 𝐴) · (𝐴 · 𝐵)))
13 ax-hvmulid 29948 . . . . . . . . . 10 (𝐵 ∈ ℋ → (1 · 𝐵) = 𝐵)
1413ad2antlr 725 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (1 · 𝐵) = 𝐵)
156, 12, 143eqtr3d 2784 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · (𝐴 · 𝐵)) = 𝐵)
1615adantlr 713 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · (𝐴 · 𝐵)) = 𝐵)
17 hvmul0 29966 . . . . . . . . . 10 ((1 / 𝐴) ∈ ℂ → ((1 / 𝐴) · 0) = 0)
187, 17syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 0) = 0)
1918adantlr 713 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 0) = 0)
2019adantlr 713 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 0) = 0)
213, 16, 203eqtr3d 2784 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → 𝐵 = 0)
2221ex 413 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) → (𝐴 ≠ 0 → 𝐵 = 0))
231, 22biimtrrid 242 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) → (¬ 𝐴 = 0 → 𝐵 = 0))
2423orrd 861 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) → (𝐴 = 0 ∨ 𝐵 = 0))
2524ex 413 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) = 0 → (𝐴 = 0 ∨ 𝐵 = 0)))
26 ax-hvmul0 29952 . . . . 5 (𝐵 ∈ ℋ → (0 · 𝐵) = 0)
27 oveq1 7364 . . . . . 6 (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵))
2827eqeq1d 2738 . . . . 5 (𝐴 = 0 → ((𝐴 · 𝐵) = 0 ↔ (0 · 𝐵) = 0))
2926, 28syl5ibrcom 246 . . . 4 (𝐵 ∈ ℋ → (𝐴 = 0 → (𝐴 · 𝐵) = 0))
3029adantl 482 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 = 0 → (𝐴 · 𝐵) = 0))
31 hvmul0 29966 . . . . 5 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
32 oveq2 7365 . . . . . 6 (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0))
3332eqeq1d 2738 . . . . 5 (𝐵 = 0 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 · 0) = 0))
3431, 33syl5ibrcom 246 . . . 4 (𝐴 ∈ ℂ → (𝐵 = 0 → (𝐴 · 𝐵) = 0))
3534adantr 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐵 = 0 → (𝐴 · 𝐵) = 0))
3630, 35jaod 857 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 = 0 ∨ 𝐵 = 0) → (𝐴 · 𝐵) = 0))
3725, 36impbid 211 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   · cmul 11056   / cdiv 11812  chba 29861   · csm 29863  0c0v 29866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-hv0cl 29945  ax-hvmulid 29948  ax-hvmulass 29949  ax-hvmul0 29952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813
This theorem is referenced by:  hvmulcan  30014  hvmulcan2  30015  nmlnop0iALT  30937
  Copyright terms: Public domain W3C validator