HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmul0or Structured version   Visualization version   GIF version

Theorem hvmul0or 30255
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 19-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvmul0or ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)))

Proof of Theorem hvmul0or
StepHypRef Expression
1 df-ne 2942 . . . . 5 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
2 oveq2 7411 . . . . . . . 8 ((𝐴 · 𝐵) = 0 → ((1 / 𝐴) · (𝐴 · 𝐵)) = ((1 / 𝐴) · 0))
32ad2antlr 726 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · (𝐴 · 𝐵)) = ((1 / 𝐴) · 0))
4 recid2 11882 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 𝐴) = 1)
54oveq1d 7418 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴) · 𝐵) = (1 · 𝐵))
65adantlr 714 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴) · 𝐵) = (1 · 𝐵))
7 reccl 11874 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
87adantlr 714 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
9 simpll 766 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
10 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℋ)
11 ax-hvmulass 30237 . . . . . . . . . 10 (((1 / 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((1 / 𝐴) · 𝐴) · 𝐵) = ((1 / 𝐴) · (𝐴 · 𝐵)))
128, 9, 10, 11syl3anc 1372 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴) · 𝐵) = ((1 / 𝐴) · (𝐴 · 𝐵)))
13 ax-hvmulid 30236 . . . . . . . . . 10 (𝐵 ∈ ℋ → (1 · 𝐵) = 𝐵)
1413ad2antlr 726 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → (1 · 𝐵) = 𝐵)
156, 12, 143eqtr3d 2781 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · (𝐴 · 𝐵)) = 𝐵)
1615adantlr 714 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · (𝐴 · 𝐵)) = 𝐵)
17 hvmul0 30254 . . . . . . . . . 10 ((1 / 𝐴) ∈ ℂ → ((1 / 𝐴) · 0) = 0)
187, 17syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 0) = 0)
1918adantlr 714 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 0) = 0)
2019adantlr 714 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 0) = 0)
213, 16, 203eqtr3d 2781 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 ≠ 0) → 𝐵 = 0)
2221ex 414 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) → (𝐴 ≠ 0 → 𝐵 = 0))
231, 22biimtrrid 242 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) → (¬ 𝐴 = 0 → 𝐵 = 0))
2423orrd 862 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 · 𝐵) = 0) → (𝐴 = 0 ∨ 𝐵 = 0))
2524ex 414 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) = 0 → (𝐴 = 0 ∨ 𝐵 = 0)))
26 ax-hvmul0 30240 . . . . 5 (𝐵 ∈ ℋ → (0 · 𝐵) = 0)
27 oveq1 7410 . . . . . 6 (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵))
2827eqeq1d 2735 . . . . 5 (𝐴 = 0 → ((𝐴 · 𝐵) = 0 ↔ (0 · 𝐵) = 0))
2926, 28syl5ibrcom 246 . . . 4 (𝐵 ∈ ℋ → (𝐴 = 0 → (𝐴 · 𝐵) = 0))
3029adantl 483 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 = 0 → (𝐴 · 𝐵) = 0))
31 hvmul0 30254 . . . . 5 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
32 oveq2 7411 . . . . . 6 (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0))
3332eqeq1d 2735 . . . . 5 (𝐵 = 0 → ((𝐴 · 𝐵) = 0 ↔ (𝐴 · 0) = 0))
3431, 33syl5ibrcom 246 . . . 4 (𝐴 ∈ ℂ → (𝐵 = 0 → (𝐴 · 𝐵) = 0))
3534adantr 482 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐵 = 0 → (𝐴 · 𝐵) = 0))
3630, 35jaod 858 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 = 0 ∨ 𝐵 = 0) → (𝐴 · 𝐵) = 0))
3725, 36impbid 211 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2941  (class class class)co 7403  cc 11103  0cc0 11105  1c1 11106   · cmul 11110   / cdiv 11866  chba 30149   · csm 30151  0c0v 30154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-hv0cl 30233  ax-hvmulid 30236  ax-hvmulass 30237  ax-hvmul0 30240
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-br 5147  df-opab 5209  df-mpt 5230  df-id 5572  df-po 5586  df-so 5587  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-div 11867
This theorem is referenced by:  hvmulcan  30302  hvmulcan2  30303  nmlnop0iALT  31225
  Copyright terms: Public domain W3C validator