HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h1datomi Structured version   Visualization version   GIF version

Theorem h1datomi 31525
Description: A 1-dimensional subspace is an atom. (Contributed by NM, 20-Jul-2001.) (New usage is discouraged.)
Hypotheses
Ref Expression
h1datom.1 𝐴C
h1datom.2 𝐵 ∈ ℋ
Assertion
Ref Expression
h1datomi (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 = (⊥‘(⊥‘{𝐵})) ∨ 𝐴 = 0))

Proof of Theorem h1datomi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 h1datom.1 . . . . . . . 8 𝐴C
21chne0i 31397 . . . . . . 7 (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
3 ssel 3929 . . . . . . . . 9 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝑥𝐴𝑥 ∈ (⊥‘(⊥‘{𝐵}))))
4 h1datom.2 . . . . . . . . . . 11 𝐵 ∈ ℋ
54h1de2ci 31500 . . . . . . . . . 10 (𝑥 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · 𝐵))
6 oveq1 7356 . . . . . . . . . . . . . . . . . 18 (𝑦 = 0 → (𝑦 · 𝐵) = (0 · 𝐵))
7 ax-hvmul0 30954 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ ℋ → (0 · 𝐵) = 0)
84, 7ax-mp 5 . . . . . . . . . . . . . . . . . 18 (0 · 𝐵) = 0
96, 8eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (𝑦 = 0 → (𝑦 · 𝐵) = 0)
10 eqeq1 2733 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑦 · 𝐵) → (𝑥 = 0 ↔ (𝑦 · 𝐵) = 0))
119, 10imbitrrid 246 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 · 𝐵) → (𝑦 = 0 → 𝑥 = 0))
1211necon3d 2946 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 · 𝐵) → (𝑥 ≠ 0𝑦 ≠ 0))
1312adantl 481 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥 ≠ 0𝑦 ≠ 0))
14 reccl 11786 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / 𝑦) ∈ ℂ)
151chshii 31171 . . . . . . . . . . . . . . . . . . . . . 22 𝐴S
16 shmulcl 31162 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴S ∧ (1 / 𝑦) ∈ ℂ ∧ 𝑥𝐴) → ((1 / 𝑦) · 𝑥) ∈ 𝐴)
1715, 16mp3an1 1450 . . . . . . . . . . . . . . . . . . . . 21 (((1 / 𝑦) ∈ ℂ ∧ 𝑥𝐴) → ((1 / 𝑦) · 𝑥) ∈ 𝐴)
1817ex 412 . . . . . . . . . . . . . . . . . . . 20 ((1 / 𝑦) ∈ ℂ → (𝑥𝐴 → ((1 / 𝑦) · 𝑥) ∈ 𝐴))
1914, 18syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥𝐴 → ((1 / 𝑦) · 𝑥) ∈ 𝐴))
2019adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥𝐴 → ((1 / 𝑦) · 𝑥) ∈ 𝐴))
21 oveq2 7357 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑦 · 𝐵) → ((1 / 𝑦) · 𝑥) = ((1 / 𝑦) · (𝑦 · 𝐵)))
22 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → 𝑦 ∈ ℂ)
23 ax-hvmulass 30951 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1 / 𝑦) ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((1 / 𝑦) · 𝑦) · 𝐵) = ((1 / 𝑦) · (𝑦 · 𝐵)))
244, 23mp3an3 1452 . . . . . . . . . . . . . . . . . . . . . . 23 (((1 / 𝑦) ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((1 / 𝑦) · 𝑦) · 𝐵) = ((1 / 𝑦) · (𝑦 · 𝐵)))
2514, 22, 24syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (((1 / 𝑦) · 𝑦) · 𝐵) = ((1 / 𝑦) · (𝑦 · 𝐵)))
26 recid2 11794 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((1 / 𝑦) · 𝑦) = 1)
2726oveq1d 7364 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (((1 / 𝑦) · 𝑦) · 𝐵) = (1 · 𝐵))
2825, 27eqtr3d 2766 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((1 / 𝑦) · (𝑦 · 𝐵)) = (1 · 𝐵))
29 ax-hvmulid 30950 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ ℋ → (1 · 𝐵) = 𝐵)
304, 29ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (1 · 𝐵) = 𝐵
3128, 30eqtrdi 2780 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((1 / 𝑦) · (𝑦 · 𝐵)) = 𝐵)
3221, 31sylan9eqr 2786 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 · 𝐵)) → ((1 / 𝑦) · 𝑥) = 𝐵)
3332eleq1d 2813 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 · 𝐵)) → (((1 / 𝑦) · 𝑥) ∈ 𝐴𝐵𝐴))
3420, 33sylibd 239 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥𝐴𝐵𝐴))
3534exp31 419 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ → (𝑦 ≠ 0 → (𝑥 = (𝑦 · 𝐵) → (𝑥𝐴𝐵𝐴))))
3635com23 86 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ → (𝑥 = (𝑦 · 𝐵) → (𝑦 ≠ 0 → (𝑥𝐴𝐵𝐴))))
3736imp 406 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑦 ≠ 0 → (𝑥𝐴𝐵𝐴)))
3813, 37syld 47 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥 ≠ 0 → (𝑥𝐴𝐵𝐴)))
3938com3r 87 . . . . . . . . . . . 12 (𝑥𝐴 → ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥 ≠ 0𝐵𝐴)))
4039expd 415 . . . . . . . . . . 11 (𝑥𝐴 → (𝑦 ∈ ℂ → (𝑥 = (𝑦 · 𝐵) → (𝑥 ≠ 0𝐵𝐴))))
4140rexlimdv 3128 . . . . . . . . . 10 (𝑥𝐴 → (∃𝑦 ∈ ℂ 𝑥 = (𝑦 · 𝐵) → (𝑥 ≠ 0𝐵𝐴)))
425, 41biimtrid 242 . . . . . . . . 9 (𝑥𝐴 → (𝑥 ∈ (⊥‘(⊥‘{𝐵})) → (𝑥 ≠ 0𝐵𝐴)))
433, 42sylcom 30 . . . . . . . 8 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝑥𝐴 → (𝑥 ≠ 0𝐵𝐴)))
4443rexlimdv 3128 . . . . . . 7 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (∃𝑥𝐴 𝑥 ≠ 0𝐵𝐴))
452, 44biimtrid 242 . . . . . 6 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0𝐵𝐴))
46 snssi 4759 . . . . . . . 8 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
47 snssi 4759 . . . . . . . . . 10 (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ)
484, 47ax-mp 5 . . . . . . . . 9 {𝐵} ⊆ ℋ
491chssii 31175 . . . . . . . . 9 𝐴 ⊆ ℋ
5048, 49occon2i 31233 . . . . . . . 8 ({𝐵} ⊆ 𝐴 → (⊥‘(⊥‘{𝐵})) ⊆ (⊥‘(⊥‘𝐴)))
5146, 50syl 17 . . . . . . 7 (𝐵𝐴 → (⊥‘(⊥‘{𝐵})) ⊆ (⊥‘(⊥‘𝐴)))
521ococi 31349 . . . . . . 7 (⊥‘(⊥‘𝐴)) = 𝐴
5351, 52sseqtrdi 3976 . . . . . 6 (𝐵𝐴 → (⊥‘(⊥‘{𝐵})) ⊆ 𝐴)
5445, 53syl6 35 . . . . 5 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0 → (⊥‘(⊥‘{𝐵})) ⊆ 𝐴))
5554anc2li 555 . . . 4 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0 → (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) ∧ (⊥‘(⊥‘{𝐵})) ⊆ 𝐴)))
56 eqss 3951 . . . 4 (𝐴 = (⊥‘(⊥‘{𝐵})) ↔ (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) ∧ (⊥‘(⊥‘{𝐵})) ⊆ 𝐴))
5755, 56imbitrrdi 252 . . 3 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0𝐴 = (⊥‘(⊥‘{𝐵}))))
5857necon1d 2947 . 2 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ (⊥‘(⊥‘{𝐵})) → 𝐴 = 0))
59 neor 3017 . 2 ((𝐴 = (⊥‘(⊥‘{𝐵})) ∨ 𝐴 = 0) ↔ (𝐴 ≠ (⊥‘(⊥‘{𝐵})) → 𝐴 = 0))
6058, 59sylibr 234 1 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 = (⊥‘(⊥‘{𝐵})) ∨ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053  wss 3903  {csn 4577  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   · cmul 11014   / cdiv 11777  chba 30863   · csm 30865  0c0v 30868   S csh 30872   C cch 30873  cort 30874  0c0h 30879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089  ax-hilex 30943  ax-hfvadd 30944  ax-hvcom 30945  ax-hvass 30946  ax-hv0cl 30947  ax-hvaddid 30948  ax-hfvmul 30949  ax-hvmulid 30950  ax-hvmulass 30951  ax-hvdistr1 30952  ax-hvdistr2 30953  ax-hvmul0 30954  ax-hfi 31023  ax-his1 31026  ax-his2 31027  ax-his3 31028  ax-his4 31029  ax-hcompl 31146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-cn 23112  df-cnp 23113  df-lm 23114  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cfil 25153  df-cau 25154  df-cmet 25155  df-grpo 30437  df-gid 30438  df-ginv 30439  df-gdiv 30440  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-vs 30543  df-nmcv 30544  df-ims 30545  df-dip 30645  df-ssp 30666  df-ph 30757  df-cbn 30807  df-hnorm 30912  df-hba 30913  df-hvsub 30915  df-hlim 30916  df-hcau 30917  df-sh 31151  df-ch 31165  df-oc 31196  df-ch0 31197
This theorem is referenced by:  h1datom  31526
  Copyright terms: Public domain W3C validator