Step | Hyp | Ref
| Expression |
1 | | h1datom.1 |
. . . . . . . 8
⊢ 𝐴 ∈
Cℋ |
2 | 1 | chne0i 29716 |
. . . . . . 7
⊢ (𝐴 ≠ 0ℋ ↔
∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ) |
3 | | ssel 3910 |
. . . . . . . . 9
⊢ (𝐴 ⊆
(⊥‘(⊥‘{𝐵})) → (𝑥 ∈ 𝐴 → 𝑥 ∈ (⊥‘(⊥‘{𝐵})))) |
4 | | h1datom.2 |
. . . . . . . . . . 11
⊢ 𝐵 ∈ ℋ |
5 | 4 | h1de2ci 29819 |
. . . . . . . . . 10
⊢ (𝑥 ∈
(⊥‘(⊥‘{𝐵})) ↔ ∃𝑦 ∈ ℂ 𝑥 = (𝑦 ·ℎ 𝐵)) |
6 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 0 → (𝑦 ·ℎ 𝐵) = (0
·ℎ 𝐵)) |
7 | | ax-hvmul0 29273 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 ∈ ℋ → (0
·ℎ 𝐵) = 0ℎ) |
8 | 4, 7 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ (0
·ℎ 𝐵) = 0ℎ |
9 | 6, 8 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 0 → (𝑦 ·ℎ 𝐵) =
0ℎ) |
10 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑦 ·ℎ 𝐵) → (𝑥 = 0ℎ ↔ (𝑦
·ℎ 𝐵) = 0ℎ)) |
11 | 9, 10 | syl5ibr 245 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑦 ·ℎ 𝐵) → (𝑦 = 0 → 𝑥 = 0ℎ)) |
12 | 11 | necon3d 2963 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑦 ·ℎ 𝐵) → (𝑥 ≠ 0ℎ → 𝑦 ≠ 0)) |
13 | 12 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 ·ℎ 𝐵)) → (𝑥 ≠ 0ℎ → 𝑦 ≠ 0)) |
14 | | reccl 11570 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / 𝑦) ∈
ℂ) |
15 | 1 | chshii 29490 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐴 ∈
Sℋ |
16 | | shmulcl 29481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈
Sℋ ∧ (1 / 𝑦) ∈ ℂ ∧ 𝑥 ∈ 𝐴) → ((1 / 𝑦) ·ℎ 𝑥) ∈ 𝐴) |
17 | 15, 16 | mp3an1 1446 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((1 /
𝑦) ∈ ℂ ∧
𝑥 ∈ 𝐴) → ((1 / 𝑦) ·ℎ 𝑥) ∈ 𝐴) |
18 | 17 | ex 412 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((1 /
𝑦) ∈ ℂ →
(𝑥 ∈ 𝐴 → ((1 / 𝑦) ·ℎ 𝑥) ∈ 𝐴)) |
19 | 14, 18 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 ∈ 𝐴 → ((1 / 𝑦) ·ℎ 𝑥) ∈ 𝐴)) |
20 | 19 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 ·ℎ 𝐵)) → (𝑥 ∈ 𝐴 → ((1 / 𝑦) ·ℎ 𝑥) ∈ 𝐴)) |
21 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑦 ·ℎ 𝐵) → ((1 / 𝑦)
·ℎ 𝑥) = ((1 / 𝑦) ·ℎ (𝑦
·ℎ 𝐵))) |
22 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → 𝑦 ∈
ℂ) |
23 | | ax-hvmulass 29270 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((1 /
𝑦) ∈ ℂ ∧
𝑦 ∈ ℂ ∧
𝐵 ∈ ℋ) →
(((1 / 𝑦) · 𝑦)
·ℎ 𝐵) = ((1 / 𝑦) ·ℎ (𝑦
·ℎ 𝐵))) |
24 | 4, 23 | mp3an3 1448 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((1 /
𝑦) ∈ ℂ ∧
𝑦 ∈ ℂ) →
(((1 / 𝑦) · 𝑦)
·ℎ 𝐵) = ((1 / 𝑦) ·ℎ (𝑦
·ℎ 𝐵))) |
25 | 14, 22, 24 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (((1 / 𝑦) · 𝑦) ·ℎ 𝐵) = ((1 / 𝑦) ·ℎ (𝑦
·ℎ 𝐵))) |
26 | | recid2 11578 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((1 / 𝑦) · 𝑦) = 1) |
27 | 26 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (((1 / 𝑦) · 𝑦) ·ℎ 𝐵) = (1
·ℎ 𝐵)) |
28 | 25, 27 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((1 / 𝑦)
·ℎ (𝑦 ·ℎ 𝐵)) = (1
·ℎ 𝐵)) |
29 | | ax-hvmulid 29269 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐵 ∈ ℋ → (1
·ℎ 𝐵) = 𝐵) |
30 | 4, 29 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1
·ℎ 𝐵) = 𝐵 |
31 | 28, 30 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((1 / 𝑦)
·ℎ (𝑦 ·ℎ 𝐵)) = 𝐵) |
32 | 21, 31 | sylan9eqr 2801 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 ·ℎ 𝐵)) → ((1 / 𝑦)
·ℎ 𝑥) = 𝐵) |
33 | 32 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 ·ℎ 𝐵)) → (((1 / 𝑦)
·ℎ 𝑥) ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) |
34 | 20, 33 | sylibd 238 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 ·ℎ 𝐵)) → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)) |
35 | 34 | exp31 419 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℂ → (𝑦 ≠ 0 → (𝑥 = (𝑦 ·ℎ 𝐵) → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)))) |
36 | 35 | com23 86 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℂ → (𝑥 = (𝑦 ·ℎ 𝐵) → (𝑦 ≠ 0 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴)))) |
37 | 36 | imp 406 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 ·ℎ 𝐵)) → (𝑦 ≠ 0 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴))) |
38 | 13, 37 | syld 47 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 ·ℎ 𝐵)) → (𝑥 ≠ 0ℎ → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴))) |
39 | 38 | com3r 87 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐴 → ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 ·ℎ 𝐵)) → (𝑥 ≠ 0ℎ → 𝐵 ∈ 𝐴))) |
40 | 39 | expd 415 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ ℂ → (𝑥 = (𝑦 ·ℎ 𝐵) → (𝑥 ≠ 0ℎ → 𝐵 ∈ 𝐴)))) |
41 | 40 | rexlimdv 3211 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ ℂ 𝑥 = (𝑦 ·ℎ 𝐵) → (𝑥 ≠ 0ℎ → 𝐵 ∈ 𝐴))) |
42 | 5, 41 | syl5bi 241 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ (⊥‘(⊥‘{𝐵})) → (𝑥 ≠ 0ℎ → 𝐵 ∈ 𝐴))) |
43 | 3, 42 | sylcom 30 |
. . . . . . . 8
⊢ (𝐴 ⊆
(⊥‘(⊥‘{𝐵})) → (𝑥 ∈ 𝐴 → (𝑥 ≠ 0ℎ → 𝐵 ∈ 𝐴))) |
44 | 43 | rexlimdv 3211 |
. . . . . . 7
⊢ (𝐴 ⊆
(⊥‘(⊥‘{𝐵})) → (∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ → 𝐵 ∈ 𝐴)) |
45 | 2, 44 | syl5bi 241 |
. . . . . 6
⊢ (𝐴 ⊆
(⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0ℋ → 𝐵 ∈ 𝐴)) |
46 | | snssi 4738 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) |
47 | | snssi 4738 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℋ → {𝐵} ⊆
ℋ) |
48 | 4, 47 | ax-mp 5 |
. . . . . . . . 9
⊢ {𝐵} ⊆
ℋ |
49 | 1 | chssii 29494 |
. . . . . . . . 9
⊢ 𝐴 ⊆
ℋ |
50 | 48, 49 | occon2i 29552 |
. . . . . . . 8
⊢ ({𝐵} ⊆ 𝐴 → (⊥‘(⊥‘{𝐵})) ⊆
(⊥‘(⊥‘𝐴))) |
51 | 46, 50 | syl 17 |
. . . . . . 7
⊢ (𝐵 ∈ 𝐴 → (⊥‘(⊥‘{𝐵})) ⊆
(⊥‘(⊥‘𝐴))) |
52 | 1 | ococi 29668 |
. . . . . . 7
⊢
(⊥‘(⊥‘𝐴)) = 𝐴 |
53 | 51, 52 | sseqtrdi 3967 |
. . . . . 6
⊢ (𝐵 ∈ 𝐴 → (⊥‘(⊥‘{𝐵})) ⊆ 𝐴) |
54 | 45, 53 | syl6 35 |
. . . . 5
⊢ (𝐴 ⊆
(⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0ℋ →
(⊥‘(⊥‘{𝐵})) ⊆ 𝐴)) |
55 | 54 | anc2li 555 |
. . . 4
⊢ (𝐴 ⊆
(⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0ℋ → (𝐴 ⊆
(⊥‘(⊥‘{𝐵})) ∧
(⊥‘(⊥‘{𝐵})) ⊆ 𝐴))) |
56 | | eqss 3932 |
. . . 4
⊢ (𝐴 =
(⊥‘(⊥‘{𝐵})) ↔ (𝐴 ⊆
(⊥‘(⊥‘{𝐵})) ∧
(⊥‘(⊥‘{𝐵})) ⊆ 𝐴)) |
57 | 55, 56 | syl6ibr 251 |
. . 3
⊢ (𝐴 ⊆
(⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0ℋ → 𝐴 =
(⊥‘(⊥‘{𝐵})))) |
58 | 57 | necon1d 2964 |
. 2
⊢ (𝐴 ⊆
(⊥‘(⊥‘{𝐵})) → (𝐴 ≠ (⊥‘(⊥‘{𝐵})) → 𝐴 = 0ℋ)) |
59 | | neor 3035 |
. 2
⊢ ((𝐴 =
(⊥‘(⊥‘{𝐵})) ∨ 𝐴 = 0ℋ) ↔ (𝐴 ≠
(⊥‘(⊥‘{𝐵})) → 𝐴 = 0ℋ)) |
60 | 58, 59 | sylibr 233 |
1
⊢ (𝐴 ⊆
(⊥‘(⊥‘{𝐵})) → (𝐴 = (⊥‘(⊥‘{𝐵})) ∨ 𝐴 = 0ℋ)) |