HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h1datomi Structured version   Visualization version   GIF version

Theorem h1datomi 29943
Description: A 1-dimensional subspace is an atom. (Contributed by NM, 20-Jul-2001.) (New usage is discouraged.)
Hypotheses
Ref Expression
h1datom.1 𝐴C
h1datom.2 𝐵 ∈ ℋ
Assertion
Ref Expression
h1datomi (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 = (⊥‘(⊥‘{𝐵})) ∨ 𝐴 = 0))

Proof of Theorem h1datomi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 h1datom.1 . . . . . . . 8 𝐴C
21chne0i 29815 . . . . . . 7 (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
3 ssel 3914 . . . . . . . . 9 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝑥𝐴𝑥 ∈ (⊥‘(⊥‘{𝐵}))))
4 h1datom.2 . . . . . . . . . . 11 𝐵 ∈ ℋ
54h1de2ci 29918 . . . . . . . . . 10 (𝑥 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · 𝐵))
6 oveq1 7282 . . . . . . . . . . . . . . . . . 18 (𝑦 = 0 → (𝑦 · 𝐵) = (0 · 𝐵))
7 ax-hvmul0 29372 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ ℋ → (0 · 𝐵) = 0)
84, 7ax-mp 5 . . . . . . . . . . . . . . . . . 18 (0 · 𝐵) = 0
96, 8eqtrdi 2794 . . . . . . . . . . . . . . . . 17 (𝑦 = 0 → (𝑦 · 𝐵) = 0)
10 eqeq1 2742 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑦 · 𝐵) → (𝑥 = 0 ↔ (𝑦 · 𝐵) = 0))
119, 10syl5ibr 245 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 · 𝐵) → (𝑦 = 0 → 𝑥 = 0))
1211necon3d 2964 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 · 𝐵) → (𝑥 ≠ 0𝑦 ≠ 0))
1312adantl 482 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥 ≠ 0𝑦 ≠ 0))
14 reccl 11640 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / 𝑦) ∈ ℂ)
151chshii 29589 . . . . . . . . . . . . . . . . . . . . . 22 𝐴S
16 shmulcl 29580 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴S ∧ (1 / 𝑦) ∈ ℂ ∧ 𝑥𝐴) → ((1 / 𝑦) · 𝑥) ∈ 𝐴)
1715, 16mp3an1 1447 . . . . . . . . . . . . . . . . . . . . 21 (((1 / 𝑦) ∈ ℂ ∧ 𝑥𝐴) → ((1 / 𝑦) · 𝑥) ∈ 𝐴)
1817ex 413 . . . . . . . . . . . . . . . . . . . 20 ((1 / 𝑦) ∈ ℂ → (𝑥𝐴 → ((1 / 𝑦) · 𝑥) ∈ 𝐴))
1914, 18syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥𝐴 → ((1 / 𝑦) · 𝑥) ∈ 𝐴))
2019adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥𝐴 → ((1 / 𝑦) · 𝑥) ∈ 𝐴))
21 oveq2 7283 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑦 · 𝐵) → ((1 / 𝑦) · 𝑥) = ((1 / 𝑦) · (𝑦 · 𝐵)))
22 simpl 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → 𝑦 ∈ ℂ)
23 ax-hvmulass 29369 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1 / 𝑦) ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((1 / 𝑦) · 𝑦) · 𝐵) = ((1 / 𝑦) · (𝑦 · 𝐵)))
244, 23mp3an3 1449 . . . . . . . . . . . . . . . . . . . . . . 23 (((1 / 𝑦) ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((1 / 𝑦) · 𝑦) · 𝐵) = ((1 / 𝑦) · (𝑦 · 𝐵)))
2514, 22, 24syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (((1 / 𝑦) · 𝑦) · 𝐵) = ((1 / 𝑦) · (𝑦 · 𝐵)))
26 recid2 11648 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((1 / 𝑦) · 𝑦) = 1)
2726oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (((1 / 𝑦) · 𝑦) · 𝐵) = (1 · 𝐵))
2825, 27eqtr3d 2780 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((1 / 𝑦) · (𝑦 · 𝐵)) = (1 · 𝐵))
29 ax-hvmulid 29368 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ ℋ → (1 · 𝐵) = 𝐵)
304, 29ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (1 · 𝐵) = 𝐵
3128, 30eqtrdi 2794 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((1 / 𝑦) · (𝑦 · 𝐵)) = 𝐵)
3221, 31sylan9eqr 2800 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 · 𝐵)) → ((1 / 𝑦) · 𝑥) = 𝐵)
3332eleq1d 2823 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 · 𝐵)) → (((1 / 𝑦) · 𝑥) ∈ 𝐴𝐵𝐴))
3420, 33sylibd 238 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥𝐴𝐵𝐴))
3534exp31 420 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ → (𝑦 ≠ 0 → (𝑥 = (𝑦 · 𝐵) → (𝑥𝐴𝐵𝐴))))
3635com23 86 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ → (𝑥 = (𝑦 · 𝐵) → (𝑦 ≠ 0 → (𝑥𝐴𝐵𝐴))))
3736imp 407 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑦 ≠ 0 → (𝑥𝐴𝐵𝐴)))
3813, 37syld 47 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥 ≠ 0 → (𝑥𝐴𝐵𝐴)))
3938com3r 87 . . . . . . . . . . . 12 (𝑥𝐴 → ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥 ≠ 0𝐵𝐴)))
4039expd 416 . . . . . . . . . . 11 (𝑥𝐴 → (𝑦 ∈ ℂ → (𝑥 = (𝑦 · 𝐵) → (𝑥 ≠ 0𝐵𝐴))))
4140rexlimdv 3212 . . . . . . . . . 10 (𝑥𝐴 → (∃𝑦 ∈ ℂ 𝑥 = (𝑦 · 𝐵) → (𝑥 ≠ 0𝐵𝐴)))
425, 41syl5bi 241 . . . . . . . . 9 (𝑥𝐴 → (𝑥 ∈ (⊥‘(⊥‘{𝐵})) → (𝑥 ≠ 0𝐵𝐴)))
433, 42sylcom 30 . . . . . . . 8 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝑥𝐴 → (𝑥 ≠ 0𝐵𝐴)))
4443rexlimdv 3212 . . . . . . 7 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (∃𝑥𝐴 𝑥 ≠ 0𝐵𝐴))
452, 44syl5bi 241 . . . . . 6 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0𝐵𝐴))
46 snssi 4741 . . . . . . . 8 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
47 snssi 4741 . . . . . . . . . 10 (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ)
484, 47ax-mp 5 . . . . . . . . 9 {𝐵} ⊆ ℋ
491chssii 29593 . . . . . . . . 9 𝐴 ⊆ ℋ
5048, 49occon2i 29651 . . . . . . . 8 ({𝐵} ⊆ 𝐴 → (⊥‘(⊥‘{𝐵})) ⊆ (⊥‘(⊥‘𝐴)))
5146, 50syl 17 . . . . . . 7 (𝐵𝐴 → (⊥‘(⊥‘{𝐵})) ⊆ (⊥‘(⊥‘𝐴)))
521ococi 29767 . . . . . . 7 (⊥‘(⊥‘𝐴)) = 𝐴
5351, 52sseqtrdi 3971 . . . . . 6 (𝐵𝐴 → (⊥‘(⊥‘{𝐵})) ⊆ 𝐴)
5445, 53syl6 35 . . . . 5 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0 → (⊥‘(⊥‘{𝐵})) ⊆ 𝐴))
5554anc2li 556 . . . 4 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0 → (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) ∧ (⊥‘(⊥‘{𝐵})) ⊆ 𝐴)))
56 eqss 3936 . . . 4 (𝐴 = (⊥‘(⊥‘{𝐵})) ↔ (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) ∧ (⊥‘(⊥‘{𝐵})) ⊆ 𝐴))
5755, 56syl6ibr 251 . . 3 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0𝐴 = (⊥‘(⊥‘{𝐵}))))
5857necon1d 2965 . 2 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ (⊥‘(⊥‘{𝐵})) → 𝐴 = 0))
59 neor 3036 . 2 ((𝐴 = (⊥‘(⊥‘{𝐵})) ∨ 𝐴 = 0) ↔ (𝐴 ≠ (⊥‘(⊥‘{𝐵})) → 𝐴 = 0))
6058, 59sylibr 233 1 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 = (⊥‘(⊥‘{𝐵})) ∨ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wrex 3065  wss 3887  {csn 4561  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   · cmul 10876   / cdiv 11632  chba 29281   · csm 29283  0c0v 29286   S csh 29290   C cch 29291  cort 29292  0c0h 29297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951  ax-hilex 29361  ax-hfvadd 29362  ax-hvcom 29363  ax-hvass 29364  ax-hv0cl 29365  ax-hvaddid 29366  ax-hfvmul 29367  ax-hvmulid 29368  ax-hvmulass 29369  ax-hvdistr1 29370  ax-hvdistr2 29371  ax-hvmul0 29372  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446  ax-his4 29447  ax-hcompl 29564
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-cn 22378  df-cnp 22379  df-lm 22380  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cfil 24419  df-cau 24420  df-cmet 24421  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-vs 28961  df-nmcv 28962  df-ims 28963  df-dip 29063  df-ssp 29084  df-ph 29175  df-cbn 29225  df-hnorm 29330  df-hba 29331  df-hvsub 29333  df-hlim 29334  df-hcau 29335  df-sh 29569  df-ch 29583  df-oc 29614  df-ch0 29615
This theorem is referenced by:  h1datom  29944
  Copyright terms: Public domain W3C validator