Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  h1datomi Structured version   Visualization version   GIF version

Theorem h1datomi 29362
 Description: A 1-dimensional subspace is an atom. (Contributed by NM, 20-Jul-2001.) (New usage is discouraged.)
Hypotheses
Ref Expression
h1datom.1 𝐴C
h1datom.2 𝐵 ∈ ℋ
Assertion
Ref Expression
h1datomi (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 = (⊥‘(⊥‘{𝐵})) ∨ 𝐴 = 0))

Proof of Theorem h1datomi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 h1datom.1 . . . . . . . 8 𝐴C
21chne0i 29234 . . . . . . 7 (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
3 ssel 3946 . . . . . . . . 9 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝑥𝐴𝑥 ∈ (⊥‘(⊥‘{𝐵}))))
4 h1datom.2 . . . . . . . . . . 11 𝐵 ∈ ℋ
54h1de2ci 29337 . . . . . . . . . 10 (𝑥 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · 𝐵))
6 oveq1 7153 . . . . . . . . . . . . . . . . . 18 (𝑦 = 0 → (𝑦 · 𝐵) = (0 · 𝐵))
7 ax-hvmul0 28791 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ ℋ → (0 · 𝐵) = 0)
84, 7ax-mp 5 . . . . . . . . . . . . . . . . . 18 (0 · 𝐵) = 0
96, 8syl6eq 2875 . . . . . . . . . . . . . . . . 17 (𝑦 = 0 → (𝑦 · 𝐵) = 0)
10 eqeq1 2828 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑦 · 𝐵) → (𝑥 = 0 ↔ (𝑦 · 𝐵) = 0))
119, 10syl5ibr 249 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 · 𝐵) → (𝑦 = 0 → 𝑥 = 0))
1211necon3d 3035 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 · 𝐵) → (𝑥 ≠ 0𝑦 ≠ 0))
1312adantl 485 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥 ≠ 0𝑦 ≠ 0))
14 reccl 11299 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / 𝑦) ∈ ℂ)
151chshii 29008 . . . . . . . . . . . . . . . . . . . . . 22 𝐴S
16 shmulcl 28999 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴S ∧ (1 / 𝑦) ∈ ℂ ∧ 𝑥𝐴) → ((1 / 𝑦) · 𝑥) ∈ 𝐴)
1715, 16mp3an1 1445 . . . . . . . . . . . . . . . . . . . . 21 (((1 / 𝑦) ∈ ℂ ∧ 𝑥𝐴) → ((1 / 𝑦) · 𝑥) ∈ 𝐴)
1817ex 416 . . . . . . . . . . . . . . . . . . . 20 ((1 / 𝑦) ∈ ℂ → (𝑥𝐴 → ((1 / 𝑦) · 𝑥) ∈ 𝐴))
1914, 18syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥𝐴 → ((1 / 𝑦) · 𝑥) ∈ 𝐴))
2019adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥𝐴 → ((1 / 𝑦) · 𝑥) ∈ 𝐴))
21 oveq2 7154 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑦 · 𝐵) → ((1 / 𝑦) · 𝑥) = ((1 / 𝑦) · (𝑦 · 𝐵)))
22 simpl 486 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → 𝑦 ∈ ℂ)
23 ax-hvmulass 28788 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1 / 𝑦) ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((1 / 𝑦) · 𝑦) · 𝐵) = ((1 / 𝑦) · (𝑦 · 𝐵)))
244, 23mp3an3 1447 . . . . . . . . . . . . . . . . . . . . . . 23 (((1 / 𝑦) ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((1 / 𝑦) · 𝑦) · 𝐵) = ((1 / 𝑦) · (𝑦 · 𝐵)))
2514, 22, 24syl2anc 587 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (((1 / 𝑦) · 𝑦) · 𝐵) = ((1 / 𝑦) · (𝑦 · 𝐵)))
26 recid2 11307 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((1 / 𝑦) · 𝑦) = 1)
2726oveq1d 7161 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (((1 / 𝑦) · 𝑦) · 𝐵) = (1 · 𝐵))
2825, 27eqtr3d 2861 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((1 / 𝑦) · (𝑦 · 𝐵)) = (1 · 𝐵))
29 ax-hvmulid 28787 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ ℋ → (1 · 𝐵) = 𝐵)
304, 29ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (1 · 𝐵) = 𝐵
3128, 30syl6eq 2875 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((1 / 𝑦) · (𝑦 · 𝐵)) = 𝐵)
3221, 31sylan9eqr 2881 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 · 𝐵)) → ((1 / 𝑦) · 𝑥) = 𝐵)
3332eleq1d 2900 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 · 𝐵)) → (((1 / 𝑦) · 𝑥) ∈ 𝐴𝐵𝐴))
3420, 33sylibd 242 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥𝐴𝐵𝐴))
3534exp31 423 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ → (𝑦 ≠ 0 → (𝑥 = (𝑦 · 𝐵) → (𝑥𝐴𝐵𝐴))))
3635com23 86 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ → (𝑥 = (𝑦 · 𝐵) → (𝑦 ≠ 0 → (𝑥𝐴𝐵𝐴))))
3736imp 410 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑦 ≠ 0 → (𝑥𝐴𝐵𝐴)))
3813, 37syld 47 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥 ≠ 0 → (𝑥𝐴𝐵𝐴)))
3938com3r 87 . . . . . . . . . . . 12 (𝑥𝐴 → ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥 ≠ 0𝐵𝐴)))
4039expd 419 . . . . . . . . . . 11 (𝑥𝐴 → (𝑦 ∈ ℂ → (𝑥 = (𝑦 · 𝐵) → (𝑥 ≠ 0𝐵𝐴))))
4140rexlimdv 3276 . . . . . . . . . 10 (𝑥𝐴 → (∃𝑦 ∈ ℂ 𝑥 = (𝑦 · 𝐵) → (𝑥 ≠ 0𝐵𝐴)))
425, 41syl5bi 245 . . . . . . . . 9 (𝑥𝐴 → (𝑥 ∈ (⊥‘(⊥‘{𝐵})) → (𝑥 ≠ 0𝐵𝐴)))
433, 42sylcom 30 . . . . . . . 8 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝑥𝐴 → (𝑥 ≠ 0𝐵𝐴)))
4443rexlimdv 3276 . . . . . . 7 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (∃𝑥𝐴 𝑥 ≠ 0𝐵𝐴))
452, 44syl5bi 245 . . . . . 6 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0𝐵𝐴))
46 snssi 4726 . . . . . . . 8 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
47 snssi 4726 . . . . . . . . . 10 (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ)
484, 47ax-mp 5 . . . . . . . . 9 {𝐵} ⊆ ℋ
491chssii 29012 . . . . . . . . 9 𝐴 ⊆ ℋ
5048, 49occon2i 29070 . . . . . . . 8 ({𝐵} ⊆ 𝐴 → (⊥‘(⊥‘{𝐵})) ⊆ (⊥‘(⊥‘𝐴)))
5146, 50syl 17 . . . . . . 7 (𝐵𝐴 → (⊥‘(⊥‘{𝐵})) ⊆ (⊥‘(⊥‘𝐴)))
521ococi 29186 . . . . . . 7 (⊥‘(⊥‘𝐴)) = 𝐴
5351, 52sseqtrdi 4003 . . . . . 6 (𝐵𝐴 → (⊥‘(⊥‘{𝐵})) ⊆ 𝐴)
5445, 53syl6 35 . . . . 5 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0 → (⊥‘(⊥‘{𝐵})) ⊆ 𝐴))
5554anc2li 559 . . . 4 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0 → (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) ∧ (⊥‘(⊥‘{𝐵})) ⊆ 𝐴)))
56 eqss 3968 . . . 4 (𝐴 = (⊥‘(⊥‘{𝐵})) ↔ (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) ∧ (⊥‘(⊥‘{𝐵})) ⊆ 𝐴))
5755, 56syl6ibr 255 . . 3 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0𝐴 = (⊥‘(⊥‘{𝐵}))))
5857necon1d 3036 . 2 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ (⊥‘(⊥‘{𝐵})) → 𝐴 = 0))
59 neor 3105 . 2 ((𝐴 = (⊥‘(⊥‘{𝐵})) ∨ 𝐴 = 0) ↔ (𝐴 ≠ (⊥‘(⊥‘{𝐵})) → 𝐴 = 0))
6058, 59sylibr 237 1 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 = (⊥‘(⊥‘{𝐵})) ∨ 𝐴 = 0))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2115   ≠ wne 3014  ∃wrex 3134   ⊆ wss 3919  {csn 4550  ‘cfv 6344  (class class class)co 7146  ℂcc 10529  0cc0 10531  1c1 10532   · cmul 10536   / cdiv 11291   ℋchba 28700   ·ℎ csm 28702  0ℎc0v 28705   Sℋ csh 28709   Cℋ cch 28710  ⊥cort 28711  0ℋc0h 28716 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-inf2 9097  ax-cc 9851  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611  ax-hilex 28780  ax-hfvadd 28781  ax-hvcom 28782  ax-hvass 28783  ax-hv0cl 28784  ax-hvaddid 28785  ax-hfvmul 28786  ax-hvmulid 28787  ax-hvmulass 28788  ax-hvdistr1 28789  ax-hvdistr2 28790  ax-hvmul0 28791  ax-hfi 28860  ax-his1 28863  ax-his2 28864  ax-his3 28865  ax-his4 28866  ax-hcompl 28983 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-of 7400  df-om 7572  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-omul 8099  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8827  df-fi 8868  df-sup 8899  df-inf 8900  df-oi 8967  df-card 9361  df-acn 9364  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11695  df-3 11696  df-4 11697  df-5 11698  df-6 11699  df-7 11700  df-8 11701  df-9 11702  df-n0 11893  df-z 11977  df-dec 12094  df-uz 12239  df-q 12344  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-ico 12739  df-icc 12740  df-fz 12893  df-fzo 13036  df-fl 13164  df-seq 13372  df-exp 13433  df-hash 13694  df-cj 14456  df-re 14457  df-im 14458  df-sqrt 14592  df-abs 14593  df-clim 14843  df-rlim 14844  df-sum 15041  df-struct 16483  df-ndx 16484  df-slot 16485  df-base 16487  df-sets 16488  df-ress 16489  df-plusg 16576  df-mulr 16577  df-starv 16578  df-sca 16579  df-vsca 16580  df-ip 16581  df-tset 16582  df-ple 16583  df-ds 16585  df-unif 16586  df-hom 16587  df-cco 16588  df-rest 16694  df-topn 16695  df-0g 16713  df-gsum 16714  df-topgen 16715  df-pt 16716  df-prds 16719  df-xrs 16773  df-qtop 16778  df-imas 16779  df-xps 16781  df-mre 16855  df-mrc 16856  df-acs 16858  df-mgm 17850  df-sgrp 17899  df-mnd 17910  df-submnd 17955  df-mulg 18223  df-cntz 18445  df-cmn 18906  df-psmet 20532  df-xmet 20533  df-met 20534  df-bl 20535  df-mopn 20536  df-fbas 20537  df-fg 20538  df-cnfld 20541  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-cn 21830  df-cnp 21831  df-lm 21832  df-haus 21918  df-tx 22165  df-hmeo 22358  df-fil 22449  df-fm 22541  df-flim 22542  df-flf 22543  df-xms 22925  df-ms 22926  df-tms 22927  df-cfil 23857  df-cau 23858  df-cmet 23859  df-grpo 28274  df-gid 28275  df-ginv 28276  df-gdiv 28277  df-ablo 28326  df-vc 28340  df-nv 28373  df-va 28376  df-ba 28377  df-sm 28378  df-0v 28379  df-vs 28380  df-nmcv 28381  df-ims 28382  df-dip 28482  df-ssp 28503  df-ph 28594  df-cbn 28644  df-hnorm 28749  df-hba 28750  df-hvsub 28752  df-hlim 28753  df-hcau 28754  df-sh 28988  df-ch 29002  df-oc 29033  df-ch0 29034 This theorem is referenced by:  h1datom  29363
 Copyright terms: Public domain W3C validator