HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h1datomi Structured version   Visualization version   GIF version

Theorem h1datomi 31600
Description: A 1-dimensional subspace is an atom. (Contributed by NM, 20-Jul-2001.) (New usage is discouraged.)
Hypotheses
Ref Expression
h1datom.1 𝐴C
h1datom.2 𝐵 ∈ ℋ
Assertion
Ref Expression
h1datomi (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 = (⊥‘(⊥‘{𝐵})) ∨ 𝐴 = 0))

Proof of Theorem h1datomi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 h1datom.1 . . . . . . . 8 𝐴C
21chne0i 31472 . . . . . . 7 (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
3 ssel 3977 . . . . . . . . 9 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝑥𝐴𝑥 ∈ (⊥‘(⊥‘{𝐵}))))
4 h1datom.2 . . . . . . . . . . 11 𝐵 ∈ ℋ
54h1de2ci 31575 . . . . . . . . . 10 (𝑥 ∈ (⊥‘(⊥‘{𝐵})) ↔ ∃𝑦 ∈ ℂ 𝑥 = (𝑦 · 𝐵))
6 oveq1 7438 . . . . . . . . . . . . . . . . . 18 (𝑦 = 0 → (𝑦 · 𝐵) = (0 · 𝐵))
7 ax-hvmul0 31029 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ ℋ → (0 · 𝐵) = 0)
84, 7ax-mp 5 . . . . . . . . . . . . . . . . . 18 (0 · 𝐵) = 0
96, 8eqtrdi 2793 . . . . . . . . . . . . . . . . 17 (𝑦 = 0 → (𝑦 · 𝐵) = 0)
10 eqeq1 2741 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑦 · 𝐵) → (𝑥 = 0 ↔ (𝑦 · 𝐵) = 0))
119, 10imbitrrid 246 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 · 𝐵) → (𝑦 = 0 → 𝑥 = 0))
1211necon3d 2961 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 · 𝐵) → (𝑥 ≠ 0𝑦 ≠ 0))
1312adantl 481 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥 ≠ 0𝑦 ≠ 0))
14 reccl 11929 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / 𝑦) ∈ ℂ)
151chshii 31246 . . . . . . . . . . . . . . . . . . . . . 22 𝐴S
16 shmulcl 31237 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴S ∧ (1 / 𝑦) ∈ ℂ ∧ 𝑥𝐴) → ((1 / 𝑦) · 𝑥) ∈ 𝐴)
1715, 16mp3an1 1450 . . . . . . . . . . . . . . . . . . . . 21 (((1 / 𝑦) ∈ ℂ ∧ 𝑥𝐴) → ((1 / 𝑦) · 𝑥) ∈ 𝐴)
1817ex 412 . . . . . . . . . . . . . . . . . . . 20 ((1 / 𝑦) ∈ ℂ → (𝑥𝐴 → ((1 / 𝑦) · 𝑥) ∈ 𝐴))
1914, 18syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥𝐴 → ((1 / 𝑦) · 𝑥) ∈ 𝐴))
2019adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥𝐴 → ((1 / 𝑦) · 𝑥) ∈ 𝐴))
21 oveq2 7439 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑦 · 𝐵) → ((1 / 𝑦) · 𝑥) = ((1 / 𝑦) · (𝑦 · 𝐵)))
22 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → 𝑦 ∈ ℂ)
23 ax-hvmulass 31026 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1 / 𝑦) ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (((1 / 𝑦) · 𝑦) · 𝐵) = ((1 / 𝑦) · (𝑦 · 𝐵)))
244, 23mp3an3 1452 . . . . . . . . . . . . . . . . . . . . . . 23 (((1 / 𝑦) ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((1 / 𝑦) · 𝑦) · 𝐵) = ((1 / 𝑦) · (𝑦 · 𝐵)))
2514, 22, 24syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (((1 / 𝑦) · 𝑦) · 𝐵) = ((1 / 𝑦) · (𝑦 · 𝐵)))
26 recid2 11937 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((1 / 𝑦) · 𝑦) = 1)
2726oveq1d 7446 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (((1 / 𝑦) · 𝑦) · 𝐵) = (1 · 𝐵))
2825, 27eqtr3d 2779 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((1 / 𝑦) · (𝑦 · 𝐵)) = (1 · 𝐵))
29 ax-hvmulid 31025 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ ℋ → (1 · 𝐵) = 𝐵)
304, 29ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (1 · 𝐵) = 𝐵
3128, 30eqtrdi 2793 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → ((1 / 𝑦) · (𝑦 · 𝐵)) = 𝐵)
3221, 31sylan9eqr 2799 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 · 𝐵)) → ((1 / 𝑦) · 𝑥) = 𝐵)
3332eleq1d 2826 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 · 𝐵)) → (((1 / 𝑦) · 𝑥) ∈ 𝐴𝐵𝐴))
3420, 33sylibd 239 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥𝐴𝐵𝐴))
3534exp31 419 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℂ → (𝑦 ≠ 0 → (𝑥 = (𝑦 · 𝐵) → (𝑥𝐴𝐵𝐴))))
3635com23 86 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ → (𝑥 = (𝑦 · 𝐵) → (𝑦 ≠ 0 → (𝑥𝐴𝐵𝐴))))
3736imp 406 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑦 ≠ 0 → (𝑥𝐴𝐵𝐴)))
3813, 37syld 47 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥 ≠ 0 → (𝑥𝐴𝐵𝐴)))
3938com3r 87 . . . . . . . . . . . 12 (𝑥𝐴 → ((𝑦 ∈ ℂ ∧ 𝑥 = (𝑦 · 𝐵)) → (𝑥 ≠ 0𝐵𝐴)))
4039expd 415 . . . . . . . . . . 11 (𝑥𝐴 → (𝑦 ∈ ℂ → (𝑥 = (𝑦 · 𝐵) → (𝑥 ≠ 0𝐵𝐴))))
4140rexlimdv 3153 . . . . . . . . . 10 (𝑥𝐴 → (∃𝑦 ∈ ℂ 𝑥 = (𝑦 · 𝐵) → (𝑥 ≠ 0𝐵𝐴)))
425, 41biimtrid 242 . . . . . . . . 9 (𝑥𝐴 → (𝑥 ∈ (⊥‘(⊥‘{𝐵})) → (𝑥 ≠ 0𝐵𝐴)))
433, 42sylcom 30 . . . . . . . 8 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝑥𝐴 → (𝑥 ≠ 0𝐵𝐴)))
4443rexlimdv 3153 . . . . . . 7 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (∃𝑥𝐴 𝑥 ≠ 0𝐵𝐴))
452, 44biimtrid 242 . . . . . 6 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0𝐵𝐴))
46 snssi 4808 . . . . . . . 8 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
47 snssi 4808 . . . . . . . . . 10 (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ)
484, 47ax-mp 5 . . . . . . . . 9 {𝐵} ⊆ ℋ
491chssii 31250 . . . . . . . . 9 𝐴 ⊆ ℋ
5048, 49occon2i 31308 . . . . . . . 8 ({𝐵} ⊆ 𝐴 → (⊥‘(⊥‘{𝐵})) ⊆ (⊥‘(⊥‘𝐴)))
5146, 50syl 17 . . . . . . 7 (𝐵𝐴 → (⊥‘(⊥‘{𝐵})) ⊆ (⊥‘(⊥‘𝐴)))
521ococi 31424 . . . . . . 7 (⊥‘(⊥‘𝐴)) = 𝐴
5351, 52sseqtrdi 4024 . . . . . 6 (𝐵𝐴 → (⊥‘(⊥‘{𝐵})) ⊆ 𝐴)
5445, 53syl6 35 . . . . 5 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0 → (⊥‘(⊥‘{𝐵})) ⊆ 𝐴))
5554anc2li 555 . . . 4 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0 → (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) ∧ (⊥‘(⊥‘{𝐵})) ⊆ 𝐴)))
56 eqss 3999 . . . 4 (𝐴 = (⊥‘(⊥‘{𝐵})) ↔ (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) ∧ (⊥‘(⊥‘{𝐵})) ⊆ 𝐴))
5755, 56imbitrrdi 252 . . 3 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ 0𝐴 = (⊥‘(⊥‘{𝐵}))))
5857necon1d 2962 . 2 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 ≠ (⊥‘(⊥‘{𝐵})) → 𝐴 = 0))
59 neor 3034 . 2 ((𝐴 = (⊥‘(⊥‘{𝐵})) ∨ 𝐴 = 0) ↔ (𝐴 ≠ (⊥‘(⊥‘{𝐵})) → 𝐴 = 0))
6058, 59sylibr 234 1 (𝐴 ⊆ (⊥‘(⊥‘{𝐵})) → (𝐴 = (⊥‘(⊥‘{𝐵})) ∨ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wrex 3070  wss 3951  {csn 4626  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   · cmul 11160   / cdiv 11920  chba 30938   · csm 30940  0c0v 30943   S csh 30947   C cch 30948  cort 30949  0c0h 30954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104  ax-hcompl 31221
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-cn 23235  df-cnp 23236  df-lm 23237  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cfil 25289  df-cau 25290  df-cmet 25291  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620  df-dip 30720  df-ssp 30741  df-ph 30832  df-cbn 30882  df-hnorm 30987  df-hba 30988  df-hvsub 30990  df-hlim 30991  df-hcau 30992  df-sh 31226  df-ch 31240  df-oc 31271  df-ch0 31272
This theorem is referenced by:  h1datom  31601
  Copyright terms: Public domain W3C validator