HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmul0 Structured version   Visualization version   GIF version

Theorem hvmul0 29435
Description: Scalar multiplication with the zero vector. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvmul0 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)

Proof of Theorem hvmul0
StepHypRef Expression
1 mul01 11204 . . . . 5 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
21oveq1d 7322 . . . 4 (𝐴 ∈ ℂ → ((𝐴 · 0) · 0) = (0 · 0))
3 ax-hv0cl 29414 . . . . 5 0 ∈ ℋ
4 ax-hvmul0 29421 . . . . 5 (0 ∈ ℋ → (0 · 0) = 0)
53, 4ax-mp 5 . . . 4 (0 · 0) = 0
62, 5eqtrdi 2792 . . 3 (𝐴 ∈ ℂ → ((𝐴 · 0) · 0) = 0)
7 0cn 11017 . . . 4 0 ∈ ℂ
8 ax-hvmulass 29418 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 0 ∈ ℋ) → ((𝐴 · 0) · 0) = (𝐴 · (0 · 0)))
97, 3, 8mp3an23 1453 . . 3 (𝐴 ∈ ℂ → ((𝐴 · 0) · 0) = (𝐴 · (0 · 0)))
106, 9eqtr3d 2778 . 2 (𝐴 ∈ ℂ → 0 = (𝐴 · (0 · 0)))
115oveq2i 7318 . 2 (𝐴 · (0 · 0)) = (𝐴 · 0)
1210, 11eqtr2di 2793 1 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  (class class class)co 7307  cc 10919  0cc0 10921   · cmul 10926  chba 29330   · csm 29332  0c0v 29335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-hv0cl 29414  ax-hvmulass 29418  ax-hvmul0 29421
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-ltxr 11064
This theorem is referenced by:  hvmul0or  29436  hvsub0  29487  hsn0elch  29659  pjssmii  30092
  Copyright terms: Public domain W3C validator