Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exlimdv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2207. (Contributed by NM, 27-Apr-1994.) Remove dependencies on ax-6 1972, ax-7 2012. (Revised by Wolf Lammen, 4-Dec-2017.) |
Ref | Expression |
---|---|
exlimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimdv | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | eximdv 1921 | . 2 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)) |
3 | ax5e 1916 | . 2 ⊢ (∃𝑥𝜒 → 𝜒) | |
4 | 2, 3 | syl6 35 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Copyright terms: Public domain | W3C validator |