![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con3rr3 | Structured version Visualization version GIF version |
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.) |
Ref | Expression |
---|---|
con3rr3.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con3rr3 | ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3rr3.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | com12 32 | 1 ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: impi 164 dfbi1 212 ax13b 2036 mo2icl 3711 otsndisj 5520 snnen2oOLD 9227 uzwo 12895 ssnn0fi 13950 wrdnfi 14498 s3sndisj 14914 hmeofval 23262 alexsubALTlem4 23554 nbuhgr 28600 nb3grprlem2 28638 vtxdginducedm1lem4 28799 iswwlksnon 29107 clwwlkn 29279 clwwlknon 29343 cvnbtwn 31539 bj-fvimacnv0 36167 not12an2impnot1 43329 |
Copyright terms: Public domain | W3C validator |