|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > con3rr3 | Structured version Visualization version GIF version | ||
| Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.) | 
| Ref | Expression | 
|---|---|
| con3rr3.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| Ref | Expression | 
|---|---|
| con3rr3 | ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | con3rr3.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) | 
| 3 | 2 | com12 32 | 1 ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem is referenced by: impi 164 dfbi1 213 ax13b 2030 mo2icl 3719 otsndisj 5523 snnen2oOLD 9265 uzwo 12954 ssnn0fi 14027 wrdnfi 14587 s3sndisj 15007 hmeofval 23767 alexsubALTlem4 24059 nbuhgr 29361 nb3grprlem2 29399 vtxdginducedm1lem4 29561 iswwlksnon 29874 clwwlkn 30046 clwwlknon 30110 cvnbtwn 32306 bj-fvimacnv0 37288 not12an2impnot1 44593 | 
| Copyright terms: Public domain | W3C validator |