| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con3rr3 | Structured version Visualization version GIF version | ||
| Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| con3rr3.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con3rr3 | ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3rr3.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | com12 32 | 1 ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: impi 164 dfbi1 213 ax13b 2032 mo2icl 3702 otsndisj 5499 snnen2oOLD 9241 uzwo 12932 ssnn0fi 14008 wrdnfi 14571 s3sndisj 14991 hmeofval 23701 alexsubALTlem4 23993 nbuhgr 29327 nb3grprlem2 29365 vtxdginducedm1lem4 29527 iswwlksnon 29840 clwwlkn 30012 clwwlknon 30076 cvnbtwn 32272 bj-fvimacnv0 37309 not12an2impnot1 44560 |
| Copyright terms: Public domain | W3C validator |