Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con3rr3 | Structured version Visualization version GIF version |
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.) |
Ref | Expression |
---|---|
con3rr3.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con3rr3 | ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3rr3.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | com12 32 | 1 ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: impi 164 dfbi1 212 ax13b 2035 mo2icl 3649 otsndisj 5433 snnen2oOLD 9010 uzwo 12651 ssnn0fi 13705 wrdnfi 14251 s3sndisj 14678 hmeofval 22909 alexsubALTlem4 23201 nbuhgr 27710 nb3grprlem2 27748 vtxdginducedm1lem4 27909 iswwlksnon 28218 clwwlkn 28390 clwwlknon 28454 cvnbtwn 30648 bj-fvimacnv0 35457 not12an2impnot1 42188 |
Copyright terms: Public domain | W3C validator |