MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con3rr3 Structured version   Visualization version   GIF version

Theorem con3rr3 155
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.)
Hypothesis
Ref Expression
con3rr3.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
con3rr3 𝜒 → (𝜑 → ¬ 𝜓))

Proof of Theorem con3rr3
StepHypRef Expression
1 con3rr3.1 . . 3 (𝜑 → (𝜓𝜒))
21con3d 152 . 2 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
32com12 32 1 𝜒 → (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impi  164  dfbi1  213  ax13b  2031  mo2icl  3697  otsndisj  5494  snnen2oOLD  9234  uzwo  12925  ssnn0fi  14001  wrdnfi  14564  s3sndisj  14984  hmeofval  23694  alexsubALTlem4  23986  nbuhgr  29268  nb3grprlem2  29306  vtxdginducedm1lem4  29468  iswwlksnon  29781  clwwlkn  29953  clwwlknon  30017  cvnbtwn  32213  bj-fvimacnv0  37250  not12an2impnot1  44541
  Copyright terms: Public domain W3C validator