MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con3rr3 Structured version   Visualization version   GIF version

Theorem con3rr3 155
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.)
Hypothesis
Ref Expression
con3rr3.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
con3rr3 𝜒 → (𝜑 → ¬ 𝜓))

Proof of Theorem con3rr3
StepHypRef Expression
1 con3rr3.1 . . 3 (𝜑 → (𝜓𝜒))
21con3d 152 . 2 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
32com12 32 1 𝜒 → (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impi  164  dfbi1  212  ax13b  2036  mo2icl  3644  otsndisj  5427  snnen2o  8903  uzwo  12580  ssnn0fi  13633  wrdnfi  14179  s3sndisj  14606  hmeofval  22817  alexsubALTlem4  23109  nbuhgr  27613  nb3grprlem2  27651  vtxdginducedm1lem4  27812  iswwlksnon  28119  clwwlkn  28291  clwwlknon  28355  cvnbtwn  30549  bj-fvimacnv0  35384  not12an2impnot1  42077
  Copyright terms: Public domain W3C validator