MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con3rr3 Structured version   Visualization version   GIF version

Theorem con3rr3 155
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.)
Hypothesis
Ref Expression
con3rr3.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
con3rr3 𝜒 → (𝜑 → ¬ 𝜓))

Proof of Theorem con3rr3
StepHypRef Expression
1 con3rr3.1 . . 3 (𝜑 → (𝜓𝜒))
21con3d 152 . 2 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
32com12 32 1 𝜒 → (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impi  164  dfbi1  212  ax13b  2027  mo2icl  3706  otsndisj  5521  snnen2oOLD  9255  uzwo  12933  ssnn0fi  13991  wrdnfi  14542  s3sndisj  14958  hmeofval  23723  alexsubALTlem4  24015  nbuhgr  29248  nb3grprlem2  29286  vtxdginducedm1lem4  29448  iswwlksnon  29756  clwwlkn  29928  clwwlknon  29992  cvnbtwn  32188  bj-fvimacnv0  36916  not12an2impnot1  44154
  Copyright terms: Public domain W3C validator