Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con3rr3 | Structured version Visualization version GIF version |
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.) |
Ref | Expression |
---|---|
con3rr3.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con3rr3 | ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3rr3.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | com12 32 | 1 ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: impi 164 dfbi1 212 ax13b 2036 mo2icl 3644 otsndisj 5427 snnen2o 8903 uzwo 12580 ssnn0fi 13633 wrdnfi 14179 s3sndisj 14606 hmeofval 22817 alexsubALTlem4 23109 nbuhgr 27613 nb3grprlem2 27651 vtxdginducedm1lem4 27812 iswwlksnon 28119 clwwlkn 28291 clwwlknon 28355 cvnbtwn 30549 bj-fvimacnv0 35384 not12an2impnot1 42077 |
Copyright terms: Public domain | W3C validator |