Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con3rr3 | Structured version Visualization version GIF version |
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.) |
Ref | Expression |
---|---|
con3rr3.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con3rr3 | ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3rr3.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | com12 32 | 1 ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: impi 164 dfbi1 212 ax13b 2035 mo2icl 3650 otsndisj 5435 snnen2oOLD 9008 uzwo 12649 ssnn0fi 13703 wrdnfi 14249 s3sndisj 14676 hmeofval 22907 alexsubALTlem4 23199 nbuhgr 27708 nb3grprlem2 27746 vtxdginducedm1lem4 27907 iswwlksnon 28215 clwwlkn 28387 clwwlknon 28451 cvnbtwn 30645 bj-fvimacnv0 35454 not12an2impnot1 42158 |
Copyright terms: Public domain | W3C validator |