MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con3rr3 Structured version   Visualization version   GIF version

Theorem con3rr3 155
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.)
Hypothesis
Ref Expression
con3rr3.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
con3rr3 𝜒 → (𝜑 → ¬ 𝜓))

Proof of Theorem con3rr3
StepHypRef Expression
1 con3rr3.1 . . 3 (𝜑 → (𝜓𝜒))
21con3d 152 . 2 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
32com12 32 1 𝜒 → (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impi  164  dfbi1  212  ax13b  2035  mo2icl  3650  otsndisj  5435  snnen2oOLD  9008  uzwo  12649  ssnn0fi  13703  wrdnfi  14249  s3sndisj  14676  hmeofval  22907  alexsubALTlem4  23199  nbuhgr  27708  nb3grprlem2  27746  vtxdginducedm1lem4  27907  iswwlksnon  28215  clwwlkn  28387  clwwlknon  28451  cvnbtwn  30645  bj-fvimacnv0  35454  not12an2impnot1  42158
  Copyright terms: Public domain W3C validator