MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con3rr3 Structured version   Visualization version   GIF version

Theorem con3rr3 155
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.)
Hypothesis
Ref Expression
con3rr3.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
con3rr3 𝜒 → (𝜑 → ¬ 𝜓))

Proof of Theorem con3rr3
StepHypRef Expression
1 con3rr3.1 . . 3 (𝜑 → (𝜓𝜒))
21con3d 152 . 2 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
32com12 32 1 𝜒 → (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impi  164  dfbi1  213  ax13b  2032  mo2icl  3685  otsndisj  5479  uzwo  12870  ssnn0fi  13950  wrdnfi  14513  s3sndisj  14933  hmeofval  23645  alexsubALTlem4  23937  nbuhgr  29270  nb3grprlem2  29308  vtxdginducedm1lem4  29470  iswwlksnon  29783  clwwlkn  29955  clwwlknon  30019  cvnbtwn  32215  bj-fvimacnv0  37274  not12an2impnot1  44558
  Copyright terms: Public domain W3C validator