| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con3rr3 | Structured version Visualization version GIF version | ||
| Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| con3rr3.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con3rr3 | ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3rr3.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | com12 32 | 1 ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: impi 164 dfbi1 213 ax13b 2033 mo2icl 3668 otsndisj 5454 uzwo 12804 ssnn0fi 13887 wrdnfi 14450 s3sndisj 14869 hmeofval 23668 alexsubALTlem4 23960 nbuhgr 29316 nb3grprlem2 29354 vtxdginducedm1lem4 29516 iswwlksnon 29826 clwwlkn 29998 clwwlknon 30062 cvnbtwn 32258 bj-fvimacnv0 37320 not12an2impnot1 44601 |
| Copyright terms: Public domain | W3C validator |