| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con3rr3 | Structured version Visualization version GIF version | ||
| Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| con3rr3.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con3rr3 | ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3rr3.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | com12 32 | 1 ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: impi 164 dfbi1 213 ax13b 2032 mo2icl 3685 otsndisj 5479 uzwo 12870 ssnn0fi 13950 wrdnfi 14513 s3sndisj 14933 hmeofval 23645 alexsubALTlem4 23937 nbuhgr 29270 nb3grprlem2 29308 vtxdginducedm1lem4 29470 iswwlksnon 29783 clwwlkn 29955 clwwlknon 30019 cvnbtwn 32215 bj-fvimacnv0 37274 not12an2impnot1 44558 |
| Copyright terms: Public domain | W3C validator |