![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con3rr3 | Structured version Visualization version GIF version |
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.) |
Ref | Expression |
---|---|
con3rr3.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con3rr3 | ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3rr3.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | com12 32 | 1 ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: impi 164 dfbi1 213 ax13b 2031 mo2icl 3736 otsndisj 5538 snnen2oOLD 9290 uzwo 12976 ssnn0fi 14036 wrdnfi 14596 s3sndisj 15016 hmeofval 23787 alexsubALTlem4 24079 nbuhgr 29378 nb3grprlem2 29416 vtxdginducedm1lem4 29578 iswwlksnon 29886 clwwlkn 30058 clwwlknon 30122 cvnbtwn 32318 bj-fvimacnv0 37252 not12an2impnot1 44539 |
Copyright terms: Public domain | W3C validator |