| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con3rr3 | Structured version Visualization version GIF version | ||
| Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| con3rr3.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con3rr3 | ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3rr3.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | com12 32 | 1 ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: impi 164 dfbi1 213 ax13b 2031 mo2icl 3697 otsndisj 5494 snnen2oOLD 9234 uzwo 12925 ssnn0fi 14001 wrdnfi 14564 s3sndisj 14984 hmeofval 23694 alexsubALTlem4 23986 nbuhgr 29268 nb3grprlem2 29306 vtxdginducedm1lem4 29468 iswwlksnon 29781 clwwlkn 29953 clwwlknon 30017 cvnbtwn 32213 bj-fvimacnv0 37250 not12an2impnot1 44541 |
| Copyright terms: Public domain | W3C validator |