MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con3rr3 Structured version   Visualization version   GIF version

Theorem con3rr3 155
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.)
Hypothesis
Ref Expression
con3rr3.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
con3rr3 𝜒 → (𝜑 → ¬ 𝜓))

Proof of Theorem con3rr3
StepHypRef Expression
1 con3rr3.1 . . 3 (𝜑 → (𝜓𝜒))
21con3d 152 . 2 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
32com12 32 1 𝜒 → (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impi  164  dfbi1  212  ax13b  2033  mo2icl  3709  otsndisj  5518  snnen2oOLD  9229  uzwo  12899  ssnn0fi  13954  wrdnfi  14502  s3sndisj  14918  hmeofval  23482  alexsubALTlem4  23774  nbuhgr  28867  nb3grprlem2  28905  vtxdginducedm1lem4  29066  iswwlksnon  29374  clwwlkn  29546  clwwlknon  29610  cvnbtwn  31806  bj-fvimacnv0  36470  not12an2impnot1  43631
  Copyright terms: Public domain W3C validator