MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con3rr3 Structured version   Visualization version   GIF version

Theorem con3rr3 155
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.)
Hypothesis
Ref Expression
con3rr3.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
con3rr3 𝜒 → (𝜑 → ¬ 𝜓))

Proof of Theorem con3rr3
StepHypRef Expression
1 con3rr3.1 . . 3 (𝜑 → (𝜓𝜒))
21con3d 152 . 2 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
32com12 32 1 𝜒 → (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impi  164  dfbi1  213  ax13b  2030  mo2icl  3719  otsndisj  5523  snnen2oOLD  9265  uzwo  12954  ssnn0fi  14027  wrdnfi  14587  s3sndisj  15007  hmeofval  23767  alexsubALTlem4  24059  nbuhgr  29361  nb3grprlem2  29399  vtxdginducedm1lem4  29561  iswwlksnon  29874  clwwlkn  30046  clwwlknon  30110  cvnbtwn  32306  bj-fvimacnv0  37288  not12an2impnot1  44593
  Copyright terms: Public domain W3C validator