![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con3rr3 | Structured version Visualization version GIF version |
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.) |
Ref | Expression |
---|---|
con3rr3.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con3rr3 | ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3rr3.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | com12 32 | 1 ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: impi 164 dfbi1 212 ax13b 2033 mo2icl 3709 otsndisj 5518 snnen2oOLD 9229 uzwo 12899 ssnn0fi 13954 wrdnfi 14502 s3sndisj 14918 hmeofval 23482 alexsubALTlem4 23774 nbuhgr 28867 nb3grprlem2 28905 vtxdginducedm1lem4 29066 iswwlksnon 29374 clwwlkn 29546 clwwlknon 29610 cvnbtwn 31806 bj-fvimacnv0 36470 not12an2impnot1 43631 |
Copyright terms: Public domain | W3C validator |