![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con3rr3 | Structured version Visualization version GIF version |
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.) |
Ref | Expression |
---|---|
con3rr3.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con3rr3 | ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3rr3.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
3 | 2 | com12 32 | 1 ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: impi 164 dfbi1 213 ax13b 2029 mo2icl 3723 otsndisj 5529 snnen2oOLD 9262 uzwo 12951 ssnn0fi 14023 wrdnfi 14583 s3sndisj 15003 hmeofval 23782 alexsubALTlem4 24074 nbuhgr 29375 nb3grprlem2 29413 vtxdginducedm1lem4 29575 iswwlksnon 29883 clwwlkn 30055 clwwlknon 30119 cvnbtwn 32315 bj-fvimacnv0 37269 not12an2impnot1 44566 |
Copyright terms: Public domain | W3C validator |