MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con3rr3 Structured version   Visualization version   GIF version

Theorem con3rr3 155
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.)
Hypothesis
Ref Expression
con3rr3.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
con3rr3 𝜒 → (𝜑 → ¬ 𝜓))

Proof of Theorem con3rr3
StepHypRef Expression
1 con3rr3.1 . . 3 (𝜑 → (𝜓𝜒))
21con3d 152 . 2 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
32com12 32 1 𝜒 → (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impi  164  dfbi1  213  ax13b  2032  mo2icl  3702  otsndisj  5499  snnen2oOLD  9241  uzwo  12932  ssnn0fi  14008  wrdnfi  14571  s3sndisj  14991  hmeofval  23701  alexsubALTlem4  23993  nbuhgr  29327  nb3grprlem2  29365  vtxdginducedm1lem4  29527  iswwlksnon  29840  clwwlkn  30012  clwwlknon  30076  cvnbtwn  32272  bj-fvimacnv0  37309  not12an2impnot1  44560
  Copyright terms: Public domain W3C validator