MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con3rr3 Structured version   Visualization version   GIF version

Theorem con3rr3 155
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.)
Hypothesis
Ref Expression
con3rr3.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
con3rr3 𝜒 → (𝜑 → ¬ 𝜓))

Proof of Theorem con3rr3
StepHypRef Expression
1 con3rr3.1 . . 3 (𝜑 → (𝜓𝜒))
21con3d 152 . 2 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
32com12 32 1 𝜒 → (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impi  164  dfbi1  213  ax13b  2032  mo2icl  3688  otsndisj  5482  uzwo  12877  ssnn0fi  13957  wrdnfi  14520  s3sndisj  14940  hmeofval  23652  alexsubALTlem4  23944  nbuhgr  29277  nb3grprlem2  29315  vtxdginducedm1lem4  29477  iswwlksnon  29790  clwwlkn  29962  clwwlknon  30026  cvnbtwn  32222  bj-fvimacnv0  37281  not12an2impnot1  44565
  Copyright terms: Public domain W3C validator