MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con3rr3 Structured version   Visualization version   GIF version

Theorem con3rr3 155
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.)
Hypothesis
Ref Expression
con3rr3.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
con3rr3 𝜒 → (𝜑 → ¬ 𝜓))

Proof of Theorem con3rr3
StepHypRef Expression
1 con3rr3.1 . . 3 (𝜑 → (𝜓𝜒))
21con3d 152 . 2 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
32com12 32 1 𝜒 → (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impi  164  dfbi1  213  ax13b  2031  mo2icl  3736  otsndisj  5538  snnen2oOLD  9290  uzwo  12976  ssnn0fi  14036  wrdnfi  14596  s3sndisj  15016  hmeofval  23787  alexsubALTlem4  24079  nbuhgr  29378  nb3grprlem2  29416  vtxdginducedm1lem4  29578  iswwlksnon  29886  clwwlkn  30058  clwwlknon  30122  cvnbtwn  32318  bj-fvimacnv0  37252  not12an2impnot1  44539
  Copyright terms: Public domain W3C validator