| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con3rr3 | Structured version Visualization version GIF version | ||
| Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| con3rr3.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| con3rr3 | ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3rr3.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | con3d 152 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| 3 | 2 | com12 32 | 1 ⊢ (¬ 𝜒 → (𝜑 → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: impi 164 dfbi1 213 ax13b 2032 mo2icl 3676 otsndisj 5466 uzwo 12830 ssnn0fi 13910 wrdnfi 14473 s3sndisj 14892 hmeofval 23661 alexsubALTlem4 23953 nbuhgr 29306 nb3grprlem2 29344 vtxdginducedm1lem4 29506 iswwlksnon 29816 clwwlkn 29988 clwwlknon 30052 cvnbtwn 32248 bj-fvimacnv0 37262 not12an2impnot1 44545 |
| Copyright terms: Public domain | W3C validator |