Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax8dfeq Structured version   Visualization version   GIF version

Theorem ax8dfeq 33770
Description: A version of ax-8 2112 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010.)
Assertion
Ref Expression
ax8dfeq 𝑧((𝑧𝑥𝑧𝑦) → (𝑤𝑥𝑤𝑦))

Proof of Theorem ax8dfeq
StepHypRef Expression
1 ax6e 2385 . 2 𝑧 𝑧 = 𝑤
2 ax8 2116 . . . 4 (𝑤 = 𝑧 → (𝑤𝑥𝑧𝑥))
32equcoms 2027 . . 3 (𝑧 = 𝑤 → (𝑤𝑥𝑧𝑥))
4 ax8 2116 . . 3 (𝑧 = 𝑤 → (𝑧𝑦𝑤𝑦))
53, 4imim12d 81 . 2 (𝑧 = 𝑤 → ((𝑧𝑥𝑧𝑦) → (𝑤𝑥𝑤𝑦)))
61, 5eximii 1843 1 𝑧((𝑧𝑥𝑧𝑦) → (𝑤𝑥𝑤𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-12 2175  ax-13 2374
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator