| Step | Hyp | Ref
| Expression |
| 1 | | nfnae 2439 |
. . . 4
⊢
Ⅎ𝑧 ¬
∀𝑧 𝑧 = 𝑥 |
| 2 | | nfnae 2439 |
. . . 4
⊢
Ⅎ𝑧 ¬
∀𝑧 𝑧 = 𝑦 |
| 3 | 1, 2 | nfan 1899 |
. . 3
⊢
Ⅎ𝑧(¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) |
| 4 | | nfcvf 2926 |
. . . . . 6
⊢ (¬
∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧𝑥) |
| 5 | 4 | adantr 480 |
. . . . 5
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧𝑥) |
| 6 | 5 | nfcrd 2893 |
. . . 4
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧 𝑤 ∈ 𝑥) |
| 7 | | nfcvf 2926 |
. . . . . 6
⊢ (¬
∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧𝑦) |
| 8 | 7 | adantl 481 |
. . . . 5
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧𝑦) |
| 9 | 8 | nfcrd 2893 |
. . . 4
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧 𝑤 ∈ 𝑦) |
| 10 | 6, 9 | nfbid 1902 |
. . 3
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧(𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦)) |
| 11 | | elequ1 2116 |
. . . . 5
⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥)) |
| 12 | | elequ1 2116 |
. . . . 5
⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦)) |
| 13 | 11, 12 | bibi12d 345 |
. . . 4
⊢ (𝑤 = 𝑧 → ((𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦) ↔ (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) |
| 14 | 13 | a1i 11 |
. . 3
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑤 = 𝑧 → ((𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦) ↔ (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)))) |
| 15 | 3, 10, 14 | cbvald 2412 |
. 2
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∀𝑤(𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦) ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) |
| 16 | | axextg 2710 |
. 2
⊢
(∀𝑤(𝑤 ∈ 𝑥 ↔ 𝑤 ∈ 𝑦) → 𝑥 = 𝑦) |
| 17 | 15, 16 | biimtrrdi 254 |
1
⊢ ((¬
∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦)) |