MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax8 Structured version   Visualization version   GIF version

Theorem ax8 2105
Description: Proof of ax-8 2101 from ax8v1 2103 and ax8v2 2104, proving sufficiency of the conjunction of the latter two weakened versions of ax8v 2102, which is itself a weakened version of ax-8 2101. (Contributed by BJ, 7-Dec-2020.) (Proof shortened by Wolf Lammen, 11-Apr-2021.)
Assertion
Ref Expression
ax8 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))

Proof of Theorem ax8
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 equvinv 2025 . 2 (𝑥 = 𝑦 ↔ ∃𝑡(𝑡 = 𝑥𝑡 = 𝑦))
2 ax8v2 2104 . . . . 5 (𝑥 = 𝑡 → (𝑥𝑧𝑡𝑧))
32equcoms 2016 . . . 4 (𝑡 = 𝑥 → (𝑥𝑧𝑡𝑧))
4 ax8v1 2103 . . . 4 (𝑡 = 𝑦 → (𝑡𝑧𝑦𝑧))
53, 4sylan9 507 . . 3 ((𝑡 = 𝑥𝑡 = 𝑦) → (𝑥𝑧𝑦𝑧))
65exlimiv 1926 . 2 (∃𝑡(𝑡 = 𝑥𝑡 = 𝑦) → (𝑥𝑧𝑦𝑧))
71, 6sylbi 216 1 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1775
This theorem is referenced by:  elequ1  2106  ax9ALT  2723  elALT2  5369  axextdfeq  35393  ax8dfeq  35394  exnel  35398  bj-ax89  36154
  Copyright terms: Public domain W3C validator