![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax8 | Structured version Visualization version GIF version |
Description: Proof of ax-8 2159 from ax8v1 2161 and ax8v2 2162, proving sufficiency of the conjunction of the latter two weakened versions of ax8v 2160, which is itself a weakened version of ax-8 2159. (Contributed by BJ, 7-Dec-2020.) (Proof shortened by Wolf Lammen, 11-Apr-2021.) |
Ref | Expression |
---|---|
ax8 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equvinv 2129 | . 2 ⊢ (𝑥 = 𝑦 ↔ ∃𝑡(𝑡 = 𝑥 ∧ 𝑡 = 𝑦)) | |
2 | ax8v2 2162 | . . . . 5 ⊢ (𝑥 = 𝑡 → (𝑥 ∈ 𝑧 → 𝑡 ∈ 𝑧)) | |
3 | 2 | equcoms 2119 | . . . 4 ⊢ (𝑡 = 𝑥 → (𝑥 ∈ 𝑧 → 𝑡 ∈ 𝑧)) |
4 | ax8v1 2161 | . . . 4 ⊢ (𝑡 = 𝑦 → (𝑡 ∈ 𝑧 → 𝑦 ∈ 𝑧)) | |
5 | 3, 4 | sylan9 504 | . . 3 ⊢ ((𝑡 = 𝑥 ∧ 𝑡 = 𝑦) → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) |
6 | 5 | exlimiv 2026 | . 2 ⊢ (∃𝑡(𝑡 = 𝑥 ∧ 𝑡 = 𝑦) → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) |
7 | 1, 6 | sylbi 209 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∃wex 1875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 |
This theorem is referenced by: elequ1 2164 el 5038 axextdfeq 32208 ax8dfeq 32209 exnel 32213 bj-ax89 33166 bj-el 33285 |
Copyright terms: Public domain | W3C validator |