![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imim12d | Structured version Visualization version GIF version |
Description: Deduction combining antecedents and consequents. Deduction associated with imim12 105 and imim12i 62. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mel L. O'Cat, 30-Oct-2011.) |
Ref | Expression |
---|---|
imim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
imim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
imim12d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | imim12d.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜒 → 𝜏))) |
4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1d 82 orim12dALT 936 nfimd 1993 rspcimdv 3497 peano5 7322 isf34lem6 9489 inar1 9884 supsrlem 10219 r19.29uz 14428 o1of2 14681 o1rlimmul 14687 caucvg 14747 isprm5 15749 mrissmrid 16613 kgen2ss 21684 txlm 21777 isr0 21866 metcnpi3 22676 addcnlem 22992 nmhmcn 23244 aalioulem5 24429 xrlimcnp 25044 dmdmd 29677 mdsl0 29687 mdsl1i 29698 lmxrge0 30507 bnj517 31465 ax8dfeq 32209 bj-mo3OLD 33320 bj-ax9-2 33375 poimirlem29 33920 heicant 33926 ispridlc 34349 intabssd 38688 ss2iundf 38723 |
Copyright terms: Public domain | W3C validator |