| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imim12d | Structured version Visualization version GIF version | ||
| Description: Deduction combining antecedents and consequents. Deduction associated with imim12 105 and imim12i 62. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mel L. O'Cat, 30-Oct-2011.) |
| Ref | Expression |
|---|---|
| imim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| imim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| imim12d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | imim12d.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜒 → 𝜏))) |
| 4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1d 82 orim12dALT 911 nfimd 1895 axc15 2422 ax9ALT 2726 rspcimdv 3567 peano5 7823 isf34lem6 10268 inar1 10663 supsrlem 10999 r19.29uz 15255 o1of2 15517 o1rlimmul 15523 caucvg 15583 isprm5 16615 mrissmrid 17544 kgen2ss 23468 txlm 23561 isr0 23650 metcnpi3 24459 addcnlem 24778 nmhmcn 25045 aalioulem5 26269 xrlimcnp 26903 dmdmd 32275 mdsl0 32285 mdsl1i 32296 fldextrspunlsplem 33681 lmxrge0 33960 bnj517 34892 ax8dfeq 35831 in-ax8 36257 ss-ax8 36258 poimirlem29 37688 heicant 37694 ispridlc 38109 dffltz 42666 intabssd 43551 ss2iundf 43691 ismnushort 44333 |
| Copyright terms: Public domain | W3C validator |