| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imim12d | Structured version Visualization version GIF version | ||
| Description: Deduction combining antecedents and consequents. Deduction associated with imim12 105 and imim12i 62. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mel L. O'Cat, 30-Oct-2011.) |
| Ref | Expression |
|---|---|
| imim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| imim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| imim12d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | imim12d.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜒 → 𝜏))) |
| 4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1d 82 orim12dALT 911 nfimd 1894 axc15 2420 ax9ALT 2724 rspcimdv 3578 peano5 7869 isf34lem6 10333 inar1 10728 supsrlem 11064 r19.29uz 15317 o1of2 15579 o1rlimmul 15585 caucvg 15645 isprm5 16677 mrissmrid 17602 kgen2ss 23442 txlm 23535 isr0 23624 metcnpi3 24434 addcnlem 24753 nmhmcn 25020 aalioulem5 26244 xrlimcnp 26878 dmdmd 32229 mdsl0 32239 mdsl1i 32250 fldextrspunlsplem 33668 lmxrge0 33942 bnj517 34875 ax8dfeq 35786 in-ax8 36212 ss-ax8 36213 poimirlem29 37643 heicant 37649 ispridlc 38064 dffltz 42622 intabssd 43508 ss2iundf 43648 ismnushort 44290 |
| Copyright terms: Public domain | W3C validator |