![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imim12d | Structured version Visualization version GIF version |
Description: Deduction combining antecedents and consequents. Deduction associated with imim12 105 and imim12i 62. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mel L. O'Cat, 30-Oct-2011.) |
Ref | Expression |
---|---|
imim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
imim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
imim12d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | imim12d.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜒 → 𝜏))) |
4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1d 82 orim12dALT 910 nfimd 1893 axc15 2430 ax9ALT 2735 rspcimdv 3625 peano5 7932 peano5OLD 7933 isf34lem6 10449 inar1 10844 supsrlem 11180 r19.29uz 15399 o1of2 15659 o1rlimmul 15665 caucvg 15727 isprm5 16754 mrissmrid 17699 kgen2ss 23584 txlm 23677 isr0 23766 metcnpi3 24580 addcnlem 24905 nmhmcn 25172 aalioulem5 26396 xrlimcnp 27029 dmdmd 32332 mdsl0 32342 mdsl1i 32353 lmxrge0 33898 bnj517 34861 ax8dfeq 35762 in-ax8 36190 ss-ax8 36191 poimirlem29 37609 heicant 37615 ispridlc 38030 dffltz 42589 intabssd 43481 ss2iundf 43621 ismnushort 44270 |
Copyright terms: Public domain | W3C validator |