| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imim12d | Structured version Visualization version GIF version | ||
| Description: Deduction combining antecedents and consequents. Deduction associated with imim12 105 and imim12i 62. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mel L. O'Cat, 30-Oct-2011.) |
| Ref | Expression |
|---|---|
| imim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| imim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| imim12d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | imim12d.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜒 → 𝜏))) |
| 4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1d 82 orim12dALT 911 nfimd 1894 axc15 2420 ax9ALT 2724 rspcimdv 3569 peano5 7833 isf34lem6 10293 inar1 10688 supsrlem 11024 r19.29uz 15276 o1of2 15538 o1rlimmul 15544 caucvg 15604 isprm5 16636 mrissmrid 17565 kgen2ss 23458 txlm 23551 isr0 23640 metcnpi3 24450 addcnlem 24769 nmhmcn 25036 aalioulem5 26260 xrlimcnp 26894 dmdmd 32262 mdsl0 32272 mdsl1i 32283 fldextrspunlsplem 33644 lmxrge0 33918 bnj517 34851 ax8dfeq 35771 in-ax8 36197 ss-ax8 36198 poimirlem29 37628 heicant 37634 ispridlc 38049 dffltz 42607 intabssd 43492 ss2iundf 43632 ismnushort 44274 |
| Copyright terms: Public domain | W3C validator |