Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imim12d | Structured version Visualization version GIF version |
Description: Deduction combining antecedents and consequents. Deduction associated with imim12 105 and imim12i 62. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mel L. O'Cat, 30-Oct-2011.) |
Ref | Expression |
---|---|
imim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
imim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
imim12d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | imim12d.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜒 → 𝜏))) |
4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1d 82 orim12dALT 909 nfimd 1897 axc15 2422 ax9ALT 2733 rspcimdv 3551 peano5 7740 peano5OLD 7741 isf34lem6 10136 inar1 10531 supsrlem 10867 r19.29uz 15062 o1of2 15322 o1rlimmul 15328 caucvg 15390 isprm5 16412 mrissmrid 17350 kgen2ss 22706 txlm 22799 isr0 22888 metcnpi3 23702 addcnlem 24027 nmhmcn 24283 aalioulem5 25496 xrlimcnp 26118 dmdmd 30662 mdsl0 30672 mdsl1i 30683 lmxrge0 31902 bnj517 32865 ax8dfeq 33774 poimirlem29 35806 heicant 35812 ispridlc 36228 dffltz 40471 intabssd 41126 ss2iundf 41267 ismnushort 41919 |
Copyright terms: Public domain | W3C validator |