Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imim12d | Structured version Visualization version GIF version |
Description: Deduction combining antecedents and consequents. Deduction associated with imim12 105 and imim12i 62. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mel L. O'Cat, 30-Oct-2011.) |
Ref | Expression |
---|---|
imim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
imim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
imim12d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | imim12d.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜒 → 𝜏))) |
4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1d 82 orim12dALT 909 nfimd 1897 axc15 2422 ax9ALT 2733 rspcimdv 3550 peano5 7732 peano5OLD 7733 isf34lem6 10125 inar1 10520 supsrlem 10856 r19.29uz 15051 o1of2 15311 o1rlimmul 15317 caucvg 15379 isprm5 16401 mrissmrid 17339 kgen2ss 22695 txlm 22788 isr0 22877 metcnpi3 23691 addcnlem 24016 nmhmcn 24272 aalioulem5 25485 xrlimcnp 26107 dmdmd 30649 mdsl0 30659 mdsl1i 30670 lmxrge0 31889 bnj517 32852 ax8dfeq 33761 poimirlem29 35793 heicant 35799 ispridlc 36215 dffltz 40458 intabssd 41095 ss2iundf 41227 ismnushort 41879 |
Copyright terms: Public domain | W3C validator |