| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imim12d | Structured version Visualization version GIF version | ||
| Description: Deduction combining antecedents and consequents. Deduction associated with imim12 105 and imim12i 62. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mel L. O'Cat, 30-Oct-2011.) |
| Ref | Expression |
|---|---|
| imim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| imim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| imim12d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | imim12d.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜒 → 𝜏))) |
| 4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1d 82 orim12dALT 911 nfimd 1894 axc15 2427 ax9ALT 2731 rspcimdv 3596 peano5 7894 isf34lem6 10399 inar1 10794 supsrlem 11130 r19.29uz 15374 o1of2 15634 o1rlimmul 15640 caucvg 15700 isprm5 16731 mrissmrid 17658 kgen2ss 23498 txlm 23591 isr0 23680 metcnpi3 24490 addcnlem 24809 nmhmcn 25076 aalioulem5 26301 xrlimcnp 26935 dmdmd 32286 mdsl0 32296 mdsl1i 32307 fldextrspunlsplem 33719 lmxrge0 33988 bnj517 34921 ax8dfeq 35821 in-ax8 36247 ss-ax8 36248 poimirlem29 37678 heicant 37684 ispridlc 38099 dffltz 42624 intabssd 43510 ss2iundf 43650 ismnushort 44292 |
| Copyright terms: Public domain | W3C validator |