![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imim12d | Structured version Visualization version GIF version |
Description: Deduction combining antecedents and consequents. Deduction associated with imim12 105 and imim12i 62. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mel L. O'Cat, 30-Oct-2011.) |
Ref | Expression |
---|---|
imim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
imim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
imim12d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | imim12d.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜒 → 𝜏))) |
4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1d 82 orim12dALT 911 nfimd 1892 axc15 2425 ax9ALT 2730 rspcimdv 3612 peano5 7916 isf34lem6 10418 inar1 10813 supsrlem 11149 r19.29uz 15386 o1of2 15646 o1rlimmul 15652 caucvg 15712 isprm5 16741 mrissmrid 17686 kgen2ss 23579 txlm 23672 isr0 23761 metcnpi3 24575 addcnlem 24900 nmhmcn 25167 aalioulem5 26393 xrlimcnp 27026 dmdmd 32329 mdsl0 32339 mdsl1i 32350 lmxrge0 33913 bnj517 34878 ax8dfeq 35780 in-ax8 36207 ss-ax8 36208 poimirlem29 37636 heicant 37642 ispridlc 38057 dffltz 42621 intabssd 43509 ss2iundf 43649 ismnushort 44297 |
Copyright terms: Public domain | W3C validator |