MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imim12d Structured version   Visualization version   GIF version

Theorem imim12d 81
Description: Deduction combining antecedents and consequents. Deduction associated with imim12 105 and imim12i 62. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mel L. O'Cat, 30-Oct-2011.)
Hypotheses
Ref Expression
imim12d.1 (𝜑 → (𝜓𝜒))
imim12d.2 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
imim12d (𝜑 → ((𝜒𝜃) → (𝜓𝜏)))

Proof of Theorem imim12d
StepHypRef Expression
1 imim12d.1 . 2 (𝜑 → (𝜓𝜒))
2 imim12d.2 . . 3 (𝜑 → (𝜃𝜏))
32imim2d 57 . 2 (𝜑 → ((𝜒𝜃) → (𝜒𝜏)))
41, 3syl5d 73 1 (𝜑 → ((𝜒𝜃) → (𝜓𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  imim1d  82  orim12dALT  909  nfimd  1897  axc15  2422  ax9ALT  2733  rspcimdv  3551  peano5  7740  peano5OLD  7741  isf34lem6  10136  inar1  10531  supsrlem  10867  r19.29uz  15062  o1of2  15322  o1rlimmul  15328  caucvg  15390  isprm5  16412  mrissmrid  17350  kgen2ss  22706  txlm  22799  isr0  22888  metcnpi3  23702  addcnlem  24027  nmhmcn  24283  aalioulem5  25496  xrlimcnp  26118  dmdmd  30662  mdsl0  30672  mdsl1i  30683  lmxrge0  31902  bnj517  32865  ax8dfeq  33774  poimirlem29  35806  heicant  35812  ispridlc  36228  dffltz  40471  intabssd  41126  ss2iundf  41267  ismnushort  41919
  Copyright terms: Public domain W3C validator