| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imim12d | Structured version Visualization version GIF version | ||
| Description: Deduction combining antecedents and consequents. Deduction associated with imim12 105 and imim12i 62. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mel L. O'Cat, 30-Oct-2011.) |
| Ref | Expression |
|---|---|
| imim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| imim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| imim12d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | imim12d.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜒 → 𝜏))) |
| 4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1d 82 orim12dALT 911 nfimd 1894 axc15 2421 ax9ALT 2725 rspcimdv 3581 peano5 7872 isf34lem6 10340 inar1 10735 supsrlem 11071 r19.29uz 15324 o1of2 15586 o1rlimmul 15592 caucvg 15652 isprm5 16684 mrissmrid 17609 kgen2ss 23449 txlm 23542 isr0 23631 metcnpi3 24441 addcnlem 24760 nmhmcn 25027 aalioulem5 26251 xrlimcnp 26885 dmdmd 32236 mdsl0 32246 mdsl1i 32257 fldextrspunlsplem 33675 lmxrge0 33949 bnj517 34882 ax8dfeq 35793 in-ax8 36219 ss-ax8 36220 poimirlem29 37650 heicant 37656 ispridlc 38071 dffltz 42629 intabssd 43515 ss2iundf 43655 ismnushort 44297 |
| Copyright terms: Public domain | W3C validator |