Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imim12d | Structured version Visualization version GIF version |
Description: Deduction combining antecedents and consequents. Deduction associated with imim12 105 and imim12i 62. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mel L. O'Cat, 30-Oct-2011.) |
Ref | Expression |
---|---|
imim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
imim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
imim12d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | imim12d.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜒 → 𝜏))) |
4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1d 82 orim12dALT 908 nfimd 1898 axc15 2422 ax9ALT 2733 rspcimdv 3541 peano5 7714 peano5OLD 7715 isf34lem6 10067 inar1 10462 supsrlem 10798 r19.29uz 14990 o1of2 15250 o1rlimmul 15256 caucvg 15318 isprm5 16340 mrissmrid 17267 kgen2ss 22614 txlm 22707 isr0 22796 metcnpi3 23608 addcnlem 23933 nmhmcn 24189 aalioulem5 25401 xrlimcnp 26023 dmdmd 30563 mdsl0 30573 mdsl1i 30584 lmxrge0 31804 bnj517 32765 ax8dfeq 33680 poimirlem29 35733 heicant 35739 ispridlc 36155 dffltz 40387 intabssd 41024 ss2iundf 41156 ismnushort 41808 |
Copyright terms: Public domain | W3C validator |