| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imim12d | Structured version Visualization version GIF version | ||
| Description: Deduction combining antecedents and consequents. Deduction associated with imim12 105 and imim12i 62. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mel L. O'Cat, 30-Oct-2011.) |
| Ref | Expression |
|---|---|
| imim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| imim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| imim12d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | imim12d.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜒 → 𝜏))) |
| 4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim1d 82 orim12dALT 911 nfimd 1895 axc15 2424 ax9ALT 2728 rspcimdv 3563 peano5 7829 isf34lem6 10278 inar1 10673 supsrlem 11009 r19.29uz 15260 o1of2 15522 o1rlimmul 15528 caucvg 15588 isprm5 16620 mrissmrid 17549 kgen2ss 23471 txlm 23564 isr0 23653 metcnpi3 24462 addcnlem 24781 nmhmcn 25048 aalioulem5 26272 xrlimcnp 26906 dmdmd 32282 mdsl0 32292 mdsl1i 32303 fldextrspunlsplem 33707 lmxrge0 33986 bnj517 34918 ax8dfeq 35861 in-ax8 36289 ss-ax8 36290 poimirlem29 37709 heicant 37715 ispridlc 38130 dffltz 42752 intabssd 43636 ss2iundf 43776 ismnushort 44418 |
| Copyright terms: Public domain | W3C validator |