![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imim12d | Structured version Visualization version GIF version |
Description: Deduction combining antecedents and consequents. Deduction associated with imim12 105 and imim12i 62. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mel L. O'Cat, 30-Oct-2011.) |
Ref | Expression |
---|---|
imim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
imim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
imim12d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | imim12d.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | 2 | imim2d 57 | . 2 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜒 → 𝜏))) |
4 | 1, 3 | syl5d 73 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim1d 82 orim12dALT 911 nfimd 1898 axc15 2422 ax9ALT 2728 rspcimdv 3603 peano5 7884 peano5OLD 7885 isf34lem6 10375 inar1 10770 supsrlem 11106 r19.29uz 15297 o1of2 15557 o1rlimmul 15563 caucvg 15625 isprm5 16644 mrissmrid 17585 kgen2ss 23059 txlm 23152 isr0 23241 metcnpi3 24055 addcnlem 24380 nmhmcn 24636 aalioulem5 25849 xrlimcnp 26473 dmdmd 31553 mdsl0 31563 mdsl1i 31574 lmxrge0 32932 bnj517 33896 ax8dfeq 34770 poimirlem29 36517 heicant 36523 ispridlc 36938 dffltz 41376 intabssd 42270 ss2iundf 42410 ismnushort 43060 |
Copyright terms: Public domain | W3C validator |