Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax9 | Structured version Visualization version GIF version |
Description: Proof of ax-9 2115 from ax9v1 2117 and ax9v2 2118, proving sufficiency of the conjunction of the latter two weakened versions of ax9v 2116, which is itself a weakened version of ax-9 2115. (Contributed by BJ, 7-Dec-2020.) (Proof shortened by Wolf Lammen, 11-Apr-2021.) |
Ref | Expression |
---|---|
ax9 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equvinv 2031 | . 2 ⊢ (𝑥 = 𝑦 ↔ ∃𝑡(𝑡 = 𝑥 ∧ 𝑡 = 𝑦)) | |
2 | ax9v2 2118 | . . . . 5 ⊢ (𝑥 = 𝑡 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑡)) | |
3 | 2 | equcoms 2022 | . . . 4 ⊢ (𝑡 = 𝑥 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑡)) |
4 | ax9v1 2117 | . . . 4 ⊢ (𝑡 = 𝑦 → (𝑧 ∈ 𝑡 → 𝑧 ∈ 𝑦)) | |
5 | 3, 4 | sylan9 508 | . . 3 ⊢ ((𝑡 = 𝑥 ∧ 𝑡 = 𝑦) → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) |
6 | 5 | exlimiv 1932 | . 2 ⊢ (∃𝑡(𝑡 = 𝑥 ∧ 𝑡 = 𝑦) → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) |
7 | 1, 6 | sylbi 216 | 1 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 |
This theorem is referenced by: elequ2 2120 elALT2 5307 fv3 6830 elirrv 9432 bj-ax89 34933 axc11next 42258 |
Copyright terms: Public domain | W3C validator |