MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elALT2 Structured version   Visualization version   GIF version

Theorem elALT2 5387
Description: Alternate proof of el 5457 using ax-9 2118 and ax-pow 5383 instead of ax-pr 5447. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elALT2 𝑦 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem elALT2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 zfpow 5384 . 2 𝑦𝑧(∀𝑦(𝑦𝑧𝑦𝑥) → 𝑧𝑦)
2 ax9 2122 . . . . 5 (𝑧 = 𝑥 → (𝑦𝑧𝑦𝑥))
32alrimiv 1926 . . . 4 (𝑧 = 𝑥 → ∀𝑦(𝑦𝑧𝑦𝑥))
4 ax8 2114 . . . 4 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
53, 4embantd 59 . . 3 (𝑧 = 𝑥 → ((∀𝑦(𝑦𝑧𝑦𝑥) → 𝑧𝑦) → 𝑥𝑦))
65spimvw 1995 . 2 (∀𝑧(∀𝑦(𝑦𝑧𝑦𝑥) → 𝑧𝑦) → 𝑥𝑦)
71, 6eximii 1835 1 𝑦 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-pow 5383
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778
This theorem is referenced by:  dtruALT2  5388  dvdemo2  5392
  Copyright terms: Public domain W3C validator