MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elALT2 Structured version   Visualization version   GIF version

Theorem elALT2 5292
Description: Alternate proof of el 5357 using ax-9 2116 and ax-pow 5288 instead of ax-pr 5352. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elALT2 𝑦 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem elALT2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 zfpow 5289 . 2 𝑦𝑧(∀𝑦(𝑦𝑧𝑦𝑥) → 𝑧𝑦)
2 ax9 2120 . . . . 5 (𝑧 = 𝑥 → (𝑦𝑧𝑦𝑥))
32alrimiv 1930 . . . 4 (𝑧 = 𝑥 → ∀𝑦(𝑦𝑧𝑦𝑥))
4 ax8 2112 . . . 4 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
53, 4embantd 59 . . 3 (𝑧 = 𝑥 → ((∀𝑦(𝑦𝑧𝑦𝑥) → 𝑧𝑦) → 𝑥𝑦))
65spimvw 1999 . 2 (∀𝑧(∀𝑦(𝑦𝑧𝑦𝑥) → 𝑧𝑦) → 𝑥𝑦)
71, 6eximii 1839 1 𝑦 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-pow 5288
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by:  dtruALT2  5293  dvdemo2  5297
  Copyright terms: Public domain W3C validator