| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elALT2 | Structured version Visualization version GIF version | ||
| Description: Alternate proof of el 5417 using ax-9 2119 and ax-pow 5340 instead of ax-pr 5407. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elALT2 | ⊢ ∃𝑦 𝑥 ∈ 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfpow 5341 | . 2 ⊢ ∃𝑦∀𝑧(∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) | |
| 2 | ax9 2123 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥)) | |
| 3 | 2 | alrimiv 1927 | . . . 4 ⊢ (𝑧 = 𝑥 → ∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥)) |
| 4 | ax8 2115 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑥 ∈ 𝑦)) | |
| 5 | 3, 4 | embantd 59 | . . 3 ⊢ (𝑧 = 𝑥 → ((∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) → 𝑥 ∈ 𝑦)) |
| 6 | 5 | spimvw 1986 | . 2 ⊢ (∀𝑧(∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) → 𝑥 ∈ 𝑦) |
| 7 | 1, 6 | eximii 1837 | 1 ⊢ ∃𝑦 𝑥 ∈ 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-pow 5340 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: dtruALT2 5345 dvdemo2 5349 |
| Copyright terms: Public domain | W3C validator |