|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > elALT2 | Structured version Visualization version GIF version | ||
| Description: Alternate proof of el 5441 using ax-9 2117 and ax-pow 5364 instead of ax-pr 5431. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| elALT2 | ⊢ ∃𝑦 𝑥 ∈ 𝑦 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zfpow 5365 | . 2 ⊢ ∃𝑦∀𝑧(∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) | |
| 2 | ax9 2121 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥)) | |
| 3 | 2 | alrimiv 1926 | . . . 4 ⊢ (𝑧 = 𝑥 → ∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥)) | 
| 4 | ax8 2113 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝑦 → 𝑥 ∈ 𝑦)) | |
| 5 | 3, 4 | embantd 59 | . . 3 ⊢ (𝑧 = 𝑥 → ((∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) → 𝑥 ∈ 𝑦)) | 
| 6 | 5 | spimvw 1994 | . 2 ⊢ (∀𝑧(∀𝑦(𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑦) → 𝑥 ∈ 𝑦) | 
| 7 | 1, 6 | eximii 1836 | 1 ⊢ ∃𝑦 𝑥 ∈ 𝑦 | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1537 ∃wex 1778 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-pow 5364 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 | 
| This theorem is referenced by: dtruALT2 5369 dvdemo2 5373 | 
| Copyright terms: Public domain | W3C validator |