MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylan9 Structured version   Visualization version   GIF version

Theorem sylan9 509
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Hypotheses
Ref Expression
sylan9.1 (𝜑 → (𝜓𝜒))
sylan9.2 (𝜃 → (𝜒𝜏))
Assertion
Ref Expression
sylan9 ((𝜑𝜃) → (𝜓𝜏))

Proof of Theorem sylan9
StepHypRef Expression
1 sylan9.1 . . 3 (𝜑 → (𝜓𝜒))
2 sylan9.2 . . 3 (𝜃 → (𝜒𝜏))
31, 2syl9 77 . 2 (𝜑 → (𝜃 → (𝜓𝜏)))
43imp 408 1 ((𝜑𝜃) → (𝜓𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  ax8  2113  ax9  2121  rspc2  3621  rspc2v  3623  rspc3v  3628  rspc4v  3631  rspc8v  3633  copsexgw  5491  copsexg  5492  chfnrn  7051  fvcofneq  7095  ffnfv  7118  f1elima  7262  onint  7778  peano5  7884  peano5OLD  7885  f1oweALT  7959  smoel2  8363  pssnn  9168  php  9210  pssnnOLD  9265  fiint  9324  dffi2  9418  alephnbtwn  10066  cfcof  10269  zorn2lem7  10497  suplem1pr  11047  addsrpr  11070  mulsrpr  11071  cau3lem  15301  divalglem8  16343  efgi  19587  elfrlmbasn0  21318  locfincmp  23030  tx1stc  23154  fbunfip  23373  filuni  23389  ufileu  23423  rescncf  24413  shmodsi  30642  spanuni  30797  spansneleq  30823  mdi  31548  dmdi  31555  dmdi4  31560  funimass4f  31861  bj-ax89  35555  poimirlem32  36520  ffnafv  45879
  Copyright terms: Public domain W3C validator