Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylan9 | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
sylan9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylan9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
sylan9 | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylan9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
4 | 3 | imp 410 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: ax8 2117 ax9 2125 rspc2 3549 rspc2v 3551 rspc3v 3554 copsexgw 5349 copsexg 5350 chfnrn 6810 fvcofneq 6850 ffnfv 6873 f1elima 7013 onint 7509 peano5 7604 f1oweALT 7677 smoel2 8010 pssnn 8738 pssnnOLD 8774 fiint 8828 dffi2 8920 alephnbtwn 9531 cfcof 9734 zorn2lem7 9962 suplem1pr 10512 addsrpr 10535 mulsrpr 10536 cau3lem 14762 divalglem8 15801 efgi 18912 elfrlmbasn0 20528 locfincmp 22226 tx1stc 22350 fbunfip 22569 filuni 22585 ufileu 22619 rescncf 23598 shmodsi 29271 spanuni 29426 spansneleq 29452 mdi 30177 dmdi 30184 dmdi4 30189 funimass4f 30494 bj-ax89 34405 poimirlem32 35369 ffnafv 44095 |
Copyright terms: Public domain | W3C validator |