| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9 | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| sylan9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylan9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9 | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylan9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ax8 2115 ax9 2123 spcimgft 3501 rspc2 3586 rspc2v 3588 rspc3v 3593 rspc4v 3597 rspc8v 3599 copsexgw 5433 copsexg 5434 chfnrn 6983 fvcofneq 7027 ffnfv 7053 f1elima 7200 onint 7726 peano5 7826 f1oweALT 7907 smoel2 8286 pssnn 9082 php 9121 fiint 9216 fiintOLD 9217 dffi2 9313 alephnbtwn 9965 cfcof 10168 zorn2lem7 10396 suplem1pr 10946 addsrpr 10969 mulsrpr 10970 cau3lem 15262 divalglem8 16311 efgi 19598 elfrlmbasn0 21670 locfincmp 23411 tx1stc 23535 fbunfip 23754 filuni 23770 ufileu 23804 rescncf 24788 shmodsi 31333 spanuni 31488 spansneleq 31514 mdi 32239 dmdi 32246 dmdi4 32251 funimass4f 32580 tz9.1regs 35067 bj-ax89 36652 poimirlem32 37632 ffnafv 47155 |
| Copyright terms: Public domain | W3C validator |