Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylan9 | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
sylan9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylan9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
sylan9 | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylan9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
4 | 3 | imp 407 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: ax8 2113 ax9 2121 rspc2 3569 rspc2v 3571 rspc3v 3574 copsexgw 5405 copsexg 5406 chfnrn 6935 fvcofneq 6978 ffnfv 7001 f1elima 7145 onint 7649 peano5 7749 peano5OLD 7750 f1oweALT 7824 smoel2 8203 pssnn 8960 php 9002 pssnnOLD 9049 fiint 9100 dffi2 9191 alephnbtwn 9836 cfcof 10039 zorn2lem7 10267 suplem1pr 10817 addsrpr 10840 mulsrpr 10841 cau3lem 15075 divalglem8 16118 efgi 19334 elfrlmbasn0 20979 locfincmp 22686 tx1stc 22810 fbunfip 23029 filuni 23045 ufileu 23079 rescncf 24069 shmodsi 29760 spanuni 29915 spansneleq 29941 mdi 30666 dmdi 30673 dmdi4 30678 funimass4f 30981 bj-ax89 34868 poimirlem32 35818 ffnafv 44674 |
Copyright terms: Public domain | W3C validator |