| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9 | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| sylan9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylan9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9 | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylan9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ax8 2117 ax9 2125 spcimgft 3499 rspc2 3581 rspc2v 3583 rspc3v 3588 rspc4v 3592 rspc8v 3594 copsexgw 5425 copsexg 5426 chfnrn 6977 fvcofneq 7021 ffnfv 7047 f1elima 7192 onint 7718 peano5 7818 f1oweALT 7899 smoel2 8278 pssnn 9073 php 9111 fiint 9206 dffi2 9302 alephnbtwn 9957 cfcof 10160 zorn2lem7 10388 suplem1pr 10938 addsrpr 10961 mulsrpr 10962 cau3lem 15257 divalglem8 16306 efgi 19626 elfrlmbasn0 21695 locfincmp 23436 tx1stc 23560 fbunfip 23779 filuni 23795 ufileu 23829 rescncf 24812 shmodsi 31361 spanuni 31516 spansneleq 31542 mdi 32267 dmdi 32274 dmdi4 32279 funimass4f 32611 tz9.1regs 35122 bj-ax89 36712 poimirlem32 37692 ffnafv 47202 |
| Copyright terms: Public domain | W3C validator |