| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9 | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| sylan9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylan9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9 | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylan9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ax8 2115 ax9 2123 spcimgft 3515 rspc2 3600 rspc2v 3602 rspc3v 3607 rspc4v 3611 rspc8v 3613 copsexgw 5453 copsexg 5454 chfnrn 7024 fvcofneq 7068 ffnfv 7094 f1elima 7241 onint 7769 peano5 7872 f1oweALT 7954 smoel2 8335 pssnn 9138 php 9177 fiint 9284 fiintOLD 9285 dffi2 9381 alephnbtwn 10031 cfcof 10234 zorn2lem7 10462 suplem1pr 11012 addsrpr 11035 mulsrpr 11036 cau3lem 15328 divalglem8 16377 efgi 19656 elfrlmbasn0 21679 locfincmp 23420 tx1stc 23544 fbunfip 23763 filuni 23779 ufileu 23813 rescncf 24797 shmodsi 31325 spanuni 31480 spansneleq 31506 mdi 32231 dmdi 32238 dmdi4 32243 funimass4f 32568 bj-ax89 36673 poimirlem32 37653 ffnafv 47176 |
| Copyright terms: Public domain | W3C validator |