| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9 | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| sylan9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylan9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9 | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylan9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ax8 2114 ax9 2122 spcimgft 3546 rspc2 3631 rspc2v 3633 rspc3v 3638 rspc4v 3642 rspc8v 3644 copsexgw 5495 copsexg 5496 chfnrn 7069 fvcofneq 7113 ffnfv 7139 f1elima 7283 onint 7810 peano5 7915 f1oweALT 7997 smoel2 8403 pssnn 9208 php 9247 fiint 9366 fiintOLD 9367 dffi2 9463 alephnbtwn 10111 cfcof 10314 zorn2lem7 10542 suplem1pr 11092 addsrpr 11115 mulsrpr 11116 cau3lem 15393 divalglem8 16437 efgi 19737 elfrlmbasn0 21783 locfincmp 23534 tx1stc 23658 fbunfip 23877 filuni 23893 ufileu 23927 rescncf 24923 shmodsi 31408 spanuni 31563 spansneleq 31589 mdi 32314 dmdi 32321 dmdi4 32326 funimass4f 32647 bj-ax89 36679 poimirlem32 37659 ffnafv 47183 |
| Copyright terms: Public domain | W3C validator |