![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9 | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
sylan9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylan9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
sylan9 | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylan9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
4 | 3 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ax8 2112 ax9 2120 spcimgft 3546 rspc2 3631 rspc2v 3633 rspc3v 3638 rspc4v 3642 rspc8v 3644 copsexgw 5501 copsexg 5502 chfnrn 7069 fvcofneq 7113 ffnfv 7139 f1elima 7283 onint 7810 peano5 7916 f1oweALT 7996 smoel2 8402 pssnn 9207 php 9245 fiint 9364 fiintOLD 9365 dffi2 9461 alephnbtwn 10109 cfcof 10312 zorn2lem7 10540 suplem1pr 11090 addsrpr 11113 mulsrpr 11114 cau3lem 15390 divalglem8 16434 efgi 19752 elfrlmbasn0 21801 locfincmp 23550 tx1stc 23674 fbunfip 23893 filuni 23909 ufileu 23943 rescncf 24937 shmodsi 31418 spanuni 31573 spansneleq 31599 mdi 32324 dmdi 32331 dmdi4 32336 funimass4f 32654 bj-ax89 36661 poimirlem32 37639 ffnafv 47121 |
Copyright terms: Public domain | W3C validator |