| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9 | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| sylan9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylan9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9 | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylan9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ax8 2115 ax9 2123 spcimgft 3509 rspc2 3594 rspc2v 3596 rspc3v 3601 rspc4v 3605 rspc8v 3607 copsexgw 5445 copsexg 5446 chfnrn 7003 fvcofneq 7047 ffnfv 7073 f1elima 7220 onint 7746 peano5 7849 f1oweALT 7930 smoel2 8309 pssnn 9109 php 9148 fiint 9253 fiintOLD 9254 dffi2 9350 alephnbtwn 10000 cfcof 10203 zorn2lem7 10431 suplem1pr 10981 addsrpr 11004 mulsrpr 11005 cau3lem 15297 divalglem8 16346 efgi 19625 elfrlmbasn0 21648 locfincmp 23389 tx1stc 23513 fbunfip 23732 filuni 23748 ufileu 23782 rescncf 24766 shmodsi 31291 spanuni 31446 spansneleq 31472 mdi 32197 dmdi 32204 dmdi4 32209 funimass4f 32534 bj-ax89 36639 poimirlem32 37619 ffnafv 47145 |
| Copyright terms: Public domain | W3C validator |