| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9 | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| sylan9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylan9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9 | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylan9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ax8 2115 ax9 2123 spcimgft 3512 rspc2 3597 rspc2v 3599 rspc3v 3604 rspc4v 3608 rspc8v 3610 copsexgw 5450 copsexg 5451 chfnrn 7021 fvcofneq 7065 ffnfv 7091 f1elima 7238 onint 7766 peano5 7869 f1oweALT 7951 smoel2 8332 pssnn 9132 php 9171 fiint 9277 fiintOLD 9278 dffi2 9374 alephnbtwn 10024 cfcof 10227 zorn2lem7 10455 suplem1pr 11005 addsrpr 11028 mulsrpr 11029 cau3lem 15321 divalglem8 16370 efgi 19649 elfrlmbasn0 21672 locfincmp 23413 tx1stc 23537 fbunfip 23756 filuni 23772 ufileu 23806 rescncf 24790 shmodsi 31318 spanuni 31473 spansneleq 31499 mdi 32224 dmdi 32231 dmdi4 32236 funimass4f 32561 bj-ax89 36666 poimirlem32 37646 ffnafv 47172 |
| Copyright terms: Public domain | W3C validator |