![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9 | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
sylan9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylan9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
sylan9 | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylan9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
4 | 3 | imp 407 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 |
This theorem is referenced by: ax8 2087 ax9 2095 rspc2 3570 rspc2v 3572 rspc3v 3575 copsexg 5273 chfnrn 6684 fvcofneq 6724 ffnfv 6745 f1elima 6886 onint 7366 peano5 7461 f1oweALT 7529 smoel2 7852 pssnn 8582 fiint 8641 dffi2 8733 alephnbtwn 9343 cfcof 9542 zorn2lem7 9770 suplem1pr 10320 addsrpr 10343 mulsrpr 10344 cau3lem 14548 divalglem8 15584 efgi 18572 elfrlmbasn0 20589 locfincmp 21818 tx1stc 21942 fbunfip 22161 filuni 22177 ufileu 22211 rescncf 23188 shmodsi 28857 spanuni 29012 spansneleq 29038 mdi 29763 dmdi 29770 dmdi4 29775 funimass4f 30072 bj-ax89 33610 poimirlem32 34455 ffnafv 42886 |
Copyright terms: Public domain | W3C validator |