![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9 | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
sylan9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylan9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
sylan9 | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylan9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
4 | 3 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ax8 2114 ax9 2122 spcimgft 3558 rspc2 3644 rspc2v 3646 rspc3v 3651 rspc4v 3655 rspc8v 3657 copsexgw 5510 copsexg 5511 chfnrn 7082 fvcofneq 7127 ffnfv 7153 f1elima 7300 onint 7826 peano5 7932 peano5OLD 7933 f1oweALT 8013 smoel2 8419 pssnn 9234 php 9273 fiint 9394 fiintOLD 9395 dffi2 9492 alephnbtwn 10140 cfcof 10343 zorn2lem7 10571 suplem1pr 11121 addsrpr 11144 mulsrpr 11145 cau3lem 15403 divalglem8 16448 efgi 19761 elfrlmbasn0 21806 locfincmp 23555 tx1stc 23679 fbunfip 23898 filuni 23914 ufileu 23948 rescncf 24942 shmodsi 31421 spanuni 31576 spansneleq 31602 mdi 32327 dmdi 32334 dmdi4 32339 funimass4f 32656 bj-ax89 36644 poimirlem32 37612 ffnafv 47086 |
Copyright terms: Public domain | W3C validator |