Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylan9 | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
sylan9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylan9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
Ref | Expression |
---|---|
sylan9 | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylan9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
4 | 3 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ax8 2114 ax9 2122 rspc2 3560 rspc2v 3562 rspc3v 3565 copsexgw 5398 copsexg 5399 chfnrn 6908 fvcofneq 6951 ffnfv 6974 f1elima 7117 onint 7617 peano5 7714 peano5OLD 7715 f1oweALT 7788 smoel2 8165 pssnn 8913 pssnnOLD 8969 fiint 9021 dffi2 9112 alephnbtwn 9758 cfcof 9961 zorn2lem7 10189 suplem1pr 10739 addsrpr 10762 mulsrpr 10763 cau3lem 14994 divalglem8 16037 efgi 19240 elfrlmbasn0 20880 locfincmp 22585 tx1stc 22709 fbunfip 22928 filuni 22944 ufileu 22978 rescncf 23966 shmodsi 29652 spanuni 29807 spansneleq 29833 mdi 30558 dmdi 30565 dmdi4 30570 funimass4f 30873 bj-ax89 34786 poimirlem32 35736 ffnafv 44550 |
Copyright terms: Public domain | W3C validator |