| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9 | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| sylan9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylan9.2 | ⊢ (𝜃 → (𝜒 → 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9 | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylan9.2 | . . 3 ⊢ (𝜃 → (𝜒 → 𝜏)) | |
| 3 | 1, 2 | syl9 77 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 → 𝜏))) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ax8 2114 ax9 2122 spcimgft 3525 rspc2 3610 rspc2v 3612 rspc3v 3617 rspc4v 3621 rspc8v 3623 copsexgw 5465 copsexg 5466 chfnrn 7039 fvcofneq 7083 ffnfv 7109 f1elima 7256 onint 7784 peano5 7889 f1oweALT 7971 smoel2 8377 pssnn 9182 php 9221 fiint 9338 fiintOLD 9339 dffi2 9435 alephnbtwn 10085 cfcof 10288 zorn2lem7 10516 suplem1pr 11066 addsrpr 11089 mulsrpr 11090 cau3lem 15373 divalglem8 16419 efgi 19700 elfrlmbasn0 21723 locfincmp 23464 tx1stc 23588 fbunfip 23807 filuni 23823 ufileu 23857 rescncf 24841 shmodsi 31370 spanuni 31525 spansneleq 31551 mdi 32276 dmdi 32283 dmdi4 32288 funimass4f 32615 bj-ax89 36696 poimirlem32 37676 ffnafv 47200 |
| Copyright terms: Public domain | W3C validator |