| Step | Hyp | Ref
| Expression |
| 1 | | elfv 6904 |
. . 3
⊢ (𝑥 ∈ (𝐹‘𝐴) ↔ ∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧))) |
| 2 | | biimpr 220 |
. . . . . . . . . 10
⊢ ((𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → (𝑦 = 𝑧 → 𝐴𝐹𝑦)) |
| 3 | 2 | alimi 1811 |
. . . . . . . . 9
⊢
(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → ∀𝑦(𝑦 = 𝑧 → 𝐴𝐹𝑦)) |
| 4 | | breq2 5147 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝐴𝐹𝑦 ↔ 𝐴𝐹𝑧)) |
| 5 | 4 | equsalvw 2003 |
. . . . . . . . 9
⊢
(∀𝑦(𝑦 = 𝑧 → 𝐴𝐹𝑦) ↔ 𝐴𝐹𝑧) |
| 6 | 3, 5 | sylib 218 |
. . . . . . . 8
⊢
(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → 𝐴𝐹𝑧) |
| 7 | 6 | anim2i 617 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) → (𝑥 ∈ 𝑧 ∧ 𝐴𝐹𝑧)) |
| 8 | 7 | eximi 1835 |
. . . . . 6
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) → ∃𝑧(𝑥 ∈ 𝑧 ∧ 𝐴𝐹𝑧)) |
| 9 | | elequ2 2123 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑦)) |
| 10 | | breq2 5147 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝐴𝐹𝑧 ↔ 𝐴𝐹𝑦)) |
| 11 | 9, 10 | anbi12d 632 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → ((𝑥 ∈ 𝑧 ∧ 𝐴𝐹𝑧) ↔ (𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦))) |
| 12 | 11 | cbvexvw 2036 |
. . . . . 6
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ 𝐴𝐹𝑧) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦)) |
| 13 | 8, 12 | sylib 218 |
. . . . 5
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) → ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦)) |
| 14 | | exsimpr 1869 |
. . . . . 6
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) → ∃𝑧∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) |
| 15 | | eu6 2574 |
. . . . . 6
⊢
(∃!𝑦 𝐴𝐹𝑦 ↔ ∃𝑧∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) |
| 16 | 14, 15 | sylibr 234 |
. . . . 5
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) → ∃!𝑦 𝐴𝐹𝑦) |
| 17 | 13, 16 | jca 511 |
. . . 4
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)) |
| 18 | | nfeu1 2588 |
. . . . . . 7
⊢
Ⅎ𝑦∃!𝑦 𝐴𝐹𝑦 |
| 19 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑥 ∈ 𝑧 |
| 20 | | nfa1 2151 |
. . . . . . . . 9
⊢
Ⅎ𝑦∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) |
| 21 | 19, 20 | nfan 1899 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) |
| 22 | 21 | nfex 2324 |
. . . . . . 7
⊢
Ⅎ𝑦∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) |
| 23 | 18, 22 | nfim 1896 |
. . . . . 6
⊢
Ⅎ𝑦(∃!𝑦 𝐴𝐹𝑦 → ∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧))) |
| 24 | | biimp 215 |
. . . . . . . . . . . . 13
⊢ ((𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → (𝐴𝐹𝑦 → 𝑦 = 𝑧)) |
| 25 | | ax9 2122 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → (𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧)) |
| 26 | 24, 25 | syl6 35 |
. . . . . . . . . . . 12
⊢ ((𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → (𝐴𝐹𝑦 → (𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧))) |
| 27 | 26 | impcomd 411 |
. . . . . . . . . . 11
⊢ ((𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → ((𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → 𝑥 ∈ 𝑧)) |
| 28 | 27 | sps 2185 |
. . . . . . . . . 10
⊢
(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → ((𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → 𝑥 ∈ 𝑧)) |
| 29 | 28 | anc2ri 556 |
. . . . . . . . 9
⊢
(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → ((𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → (𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)))) |
| 30 | 29 | com12 32 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → (∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → (𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)))) |
| 31 | 30 | eximdv 1917 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → (∃𝑧∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → ∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)))) |
| 32 | 15, 31 | biimtrid 242 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → (∃!𝑦 𝐴𝐹𝑦 → ∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)))) |
| 33 | 23, 32 | exlimi 2217 |
. . . . 5
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → (∃!𝑦 𝐴𝐹𝑦 → ∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)))) |
| 34 | 33 | imp 406 |
. . . 4
⊢
((∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦) → ∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧))) |
| 35 | 17, 34 | impbii 209 |
. . 3
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)) |
| 36 | 1, 35 | bitri 275 |
. 2
⊢ (𝑥 ∈ (𝐹‘𝐴) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)) |
| 37 | 36 | eqabi 2877 |
1
⊢ (𝐹‘𝐴) = {𝑥 ∣ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)} |