MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc16nfALT Structured version   Visualization version   GIF version

Theorem axc16nfALT 2437
Description: Alternate proof of axc16nf 2258, shorter but requiring ax-11 2156 and ax-13 2372. (Contributed by Mario Carneiro, 7-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc16nfALT (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem axc16nfALT
StepHypRef Expression
1 nfae 2433 . 2 𝑧𝑥 𝑥 = 𝑦
2 axc16g 2255 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
31, 2nf5d 2284 1 (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator