![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axc16nfALT | Structured version Visualization version GIF version |
Description: Alternate proof of axc16nf 2264, shorter but requiring ax-11 2158 and ax-13 2380. (Contributed by Mario Carneiro, 7-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axc16nfALT | ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfae 2441 | . 2 ⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | |
2 | axc16g 2261 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) | |
3 | 1, 2 | nf5d 2288 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 ax-13 2380 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |