![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axprALT | Structured version Visualization version GIF version |
Description: Alternate proof of axpr 5433. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
axprALT | ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfpair 5427 | . . 3 ⊢ {𝑥, 𝑦} ∈ V | |
2 | 1 | isseti 3496 | . 2 ⊢ ∃𝑧 𝑧 = {𝑥, 𝑦} |
3 | dfcleq 2728 | . . 3 ⊢ (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦})) | |
4 | vex 3482 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
5 | 4 | elpr 4655 | . . . . . 6 ⊢ (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)) |
6 | 5 | bibi2i 337 | . . . . 5 ⊢ ((𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦}) ↔ (𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
7 | biimpr 220 | . . . . 5 ⊢ ((𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)) → ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧)) | |
8 | 6, 7 | sylbi 217 | . . . 4 ⊢ ((𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦}) → ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧)) |
9 | 8 | alimi 1808 | . . 3 ⊢ (∀𝑤(𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦}) → ∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧)) |
10 | 3, 9 | sylbi 217 | . 2 ⊢ (𝑧 = {𝑥, 𝑦} → ∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧)) |
11 | 2, 10 | eximii 1834 | 1 ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∀wal 1535 = wceq 1537 ∃wex 1776 ∈ wcel 2106 {cpr 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-pw 4607 df-sn 4632 df-pr 4634 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |