MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axprALT Structured version   Visualization version   GIF version

Theorem axprALT 5397
Description: Alternate proof of axpr 5402. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
axprALT 𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
Distinct variable groups:   𝑥,𝑧,𝑤   𝑦,𝑧,𝑤

Proof of Theorem axprALT
StepHypRef Expression
1 zfpair 5396 . . 3 {𝑥, 𝑦} ∈ V
21isseti 3482 . 2 𝑧 𝑧 = {𝑥, 𝑦}
3 dfcleq 2729 . . 3 (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤𝑧𝑤 ∈ {𝑥, 𝑦}))
4 vex 3468 . . . . . . 7 𝑤 ∈ V
54elpr 4631 . . . . . 6 (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥𝑤 = 𝑦))
65bibi2i 337 . . . . 5 ((𝑤𝑧𝑤 ∈ {𝑥, 𝑦}) ↔ (𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
7 biimpr 220 . . . . 5 ((𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)) → ((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧))
86, 7sylbi 217 . . . 4 ((𝑤𝑧𝑤 ∈ {𝑥, 𝑦}) → ((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧))
98alimi 1811 . . 3 (∀𝑤(𝑤𝑧𝑤 ∈ {𝑥, 𝑦}) → ∀𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧))
103, 9sylbi 217 . 2 (𝑧 = {𝑥, 𝑦} → ∀𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧))
112, 10eximii 1837 1 𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cpr 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-pw 4582  df-sn 4607  df-pr 4609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator