| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axprALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of axpr 5367. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| axprALT | ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfpair 5361 | . . 3 ⊢ {𝑥, 𝑦} ∈ V | |
| 2 | 1 | isseti 3455 | . 2 ⊢ ∃𝑧 𝑧 = {𝑥, 𝑦} |
| 3 | dfcleq 2726 | . . 3 ⊢ (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦})) | |
| 4 | vex 3441 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
| 5 | 4 | elpr 4600 | . . . . . 6 ⊢ (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)) |
| 6 | 5 | bibi2i 337 | . . . . 5 ⊢ ((𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦}) ↔ (𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
| 7 | biimpr 220 | . . . . 5 ⊢ ((𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)) → ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧)) | |
| 8 | 6, 7 | sylbi 217 | . . . 4 ⊢ ((𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦}) → ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧)) |
| 9 | 8 | alimi 1812 | . . 3 ⊢ (∀𝑤(𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦}) → ∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧)) |
| 10 | 3, 9 | sylbi 217 | . 2 ⊢ (𝑧 = {𝑥, 𝑦} → ∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧)) |
| 11 | 2, 10 | eximii 1838 | 1 ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2113 {cpr 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-pw 4551 df-sn 4576 df-pr 4578 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |