![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axpr | Structured version Visualization version GIF version |
Description: Unabbreviated version of
the Axiom of Pairing of ZF set theory, derived
as a theorem from the other axioms.
This theorem should not be referenced by any proof. Instead, use ax-pr 5140 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpr | ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfpair 5138 | . . 3 ⊢ {𝑥, 𝑦} ∈ V | |
2 | 1 | isseti 3411 | . 2 ⊢ ∃𝑧 𝑧 = {𝑥, 𝑦} |
3 | dfcleq 2771 | . . 3 ⊢ (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦})) | |
4 | vex 3401 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
5 | 4 | elpr 4421 | . . . . . 6 ⊢ (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)) |
6 | 5 | bibi2i 329 | . . . . 5 ⊢ ((𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦}) ↔ (𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
7 | biimpr 212 | . . . . 5 ⊢ ((𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)) → ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧)) | |
8 | 6, 7 | sylbi 209 | . . . 4 ⊢ ((𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦}) → ((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧)) |
9 | 8 | alimi 1855 | . . 3 ⊢ (∀𝑤(𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦}) → ∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧)) |
10 | 3, 9 | sylbi 209 | . 2 ⊢ (𝑧 = {𝑥, 𝑦} → ∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧)) |
11 | 2, 10 | eximii 1880 | 1 ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∨ wo 836 ∀wal 1599 = wceq 1601 ∃wex 1823 ∈ wcel 2107 {cpr 4400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-pw 4381 df-sn 4399 df-pr 4401 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |