| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axreplem | Structured version Visualization version GIF version | ||
| Description: Lemma for axrep2 5282 and axrep3 5283. (Contributed by BJ, 6-Aug-2022.) |
| Ref | Expression |
|---|---|
| axreplem | ⊢ (𝑥 = 𝑦 → (∃𝑢(𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑥 ∧ 𝜒))) ↔ ∃𝑢(𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑦 ∧ 𝜒))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ2 2123 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
| 2 | 1 | anbi1d 631 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑧 ∈ 𝑥 ∧ 𝜒) ↔ (𝑧 ∈ 𝑦 ∧ 𝜒))) |
| 3 | 2 | exbidv 1921 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∃𝑤(𝑧 ∈ 𝑥 ∧ 𝜒) ↔ ∃𝑤(𝑧 ∈ 𝑦 ∧ 𝜒))) |
| 4 | 3 | bibi2d 342 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑥 ∧ 𝜒)) ↔ (𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑦 ∧ 𝜒)))) |
| 5 | 4 | albidv 1920 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑥 ∧ 𝜒)) ↔ ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑦 ∧ 𝜒)))) |
| 6 | 5 | imbi2d 340 | . 2 ⊢ (𝑥 = 𝑦 → ((𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑥 ∧ 𝜒))) ↔ (𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑦 ∧ 𝜒))))) |
| 7 | 6 | exbidv 1921 | 1 ⊢ (𝑥 = 𝑦 → (∃𝑢(𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑥 ∧ 𝜒))) ↔ ∃𝑢(𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑦 ∧ 𝜒))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: axrep2 5282 axrep3 5283 |
| Copyright terms: Public domain | W3C validator |