Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axreplem | Structured version Visualization version GIF version |
Description: Lemma for axrep2 5212 and axrep3 5213. (Contributed by BJ, 6-Aug-2022.) |
Ref | Expression |
---|---|
axreplem | ⊢ (𝑥 = 𝑦 → (∃𝑢(𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑥 ∧ 𝜒))) ↔ ∃𝑢(𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑦 ∧ 𝜒))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ2 2121 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
2 | 1 | anbi1d 630 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑧 ∈ 𝑥 ∧ 𝜒) ↔ (𝑧 ∈ 𝑦 ∧ 𝜒))) |
3 | 2 | exbidv 1924 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∃𝑤(𝑧 ∈ 𝑥 ∧ 𝜒) ↔ ∃𝑤(𝑧 ∈ 𝑦 ∧ 𝜒))) |
4 | 3 | bibi2d 343 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑥 ∧ 𝜒)) ↔ (𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑦 ∧ 𝜒)))) |
5 | 4 | albidv 1923 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑥 ∧ 𝜒)) ↔ ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑦 ∧ 𝜒)))) |
6 | 5 | imbi2d 341 | . 2 ⊢ (𝑥 = 𝑦 → ((𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑥 ∧ 𝜒))) ↔ (𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑦 ∧ 𝜒))))) |
7 | 6 | exbidv 1924 | 1 ⊢ (𝑥 = 𝑦 → (∃𝑢(𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑥 ∧ 𝜒))) ↔ ∃𝑢(𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑦 ∧ 𝜒))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: axrep2 5212 axrep3 5213 |
Copyright terms: Public domain | W3C validator |