Step | Hyp | Ref
| Expression |
1 | | nfe1 2149 |
. . . . 5
⊢
Ⅎ𝑤∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) |
2 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑤∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)) |
3 | 1, 2 | nfim 1900 |
. . . 4
⊢
Ⅎ𝑤(∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
4 | 3 | nfex 2322 |
. . 3
⊢
Ⅎ𝑤∃𝑥(∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
5 | | axreplem 5207 |
. . 3
⊢ (𝑤 = 𝑦 → (∃𝑥(∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) ↔ ∃𝑥(∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))))) |
6 | | axrep1 5206 |
. . 3
⊢
∃𝑥(∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) |
7 | 4, 5, 6 | chvarfv 2236 |
. 2
⊢
∃𝑥(∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
8 | | sp 2178 |
. . . . . . 7
⊢
(∀𝑦𝜑 → 𝜑) |
9 | 8 | imim1i 63 |
. . . . . 6
⊢ ((𝜑 → 𝑧 = 𝑦) → (∀𝑦𝜑 → 𝑧 = 𝑦)) |
10 | 9 | alimi 1815 |
. . . . 5
⊢
(∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦)) |
11 | 10 | eximi 1838 |
. . . 4
⊢
(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦)) |
12 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) |
13 | | nfa1 2150 |
. . . . . . 7
⊢
Ⅎ𝑦∀𝑦𝜑 |
14 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑦 𝑧 = 𝑤 |
15 | 13, 14 | nfim 1900 |
. . . . . 6
⊢
Ⅎ𝑦(∀𝑦𝜑 → 𝑧 = 𝑤) |
16 | 15 | nfal 2321 |
. . . . 5
⊢
Ⅎ𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) |
17 | | equequ2 2030 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → (𝑧 = 𝑦 ↔ 𝑧 = 𝑤)) |
18 | 17 | imbi2d 340 |
. . . . . 6
⊢ (𝑦 = 𝑤 → ((∀𝑦𝜑 → 𝑧 = 𝑦) ↔ (∀𝑦𝜑 → 𝑧 = 𝑤))) |
19 | 18 | albidv 1924 |
. . . . 5
⊢ (𝑦 = 𝑤 → (∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) ↔ ∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤))) |
20 | 12, 16, 19 | cbvexv1 2341 |
. . . 4
⊢
(∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) ↔ ∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤)) |
21 | 11, 20 | sylib 217 |
. . 3
⊢
(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤)) |
22 | 21 | imim1i 63 |
. 2
⊢
((∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) → (∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) |
23 | 7, 22 | eximii 1840 |
1
⊢
∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |