| Step | Hyp | Ref
| Expression |
| 1 | | nfe1 2150 |
. . . . 5
⊢
Ⅎ𝑤∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) |
| 2 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑤∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)) |
| 3 | 1, 2 | nfim 1896 |
. . . 4
⊢
Ⅎ𝑤(∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
| 4 | 3 | nfex 2324 |
. . 3
⊢
Ⅎ𝑤∃𝑥(∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
| 5 | | axreplem 5281 |
. . 3
⊢ (𝑤 = 𝑦 → (∃𝑥(∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) ↔ ∃𝑥(∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))))) |
| 6 | | axrep1 5280 |
. . 3
⊢
∃𝑥(∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) |
| 7 | 4, 5, 6 | chvarfv 2240 |
. 2
⊢
∃𝑥(∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
| 8 | | sp 2183 |
. . . . . . 7
⊢
(∀𝑦𝜑 → 𝜑) |
| 9 | 8 | imim1i 63 |
. . . . . 6
⊢ ((𝜑 → 𝑧 = 𝑦) → (∀𝑦𝜑 → 𝑧 = 𝑦)) |
| 10 | 9 | alimi 1811 |
. . . . 5
⊢
(∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦)) |
| 11 | 10 | eximi 1835 |
. . . 4
⊢
(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦)) |
| 12 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) |
| 13 | | nfa1 2151 |
. . . . . . 7
⊢
Ⅎ𝑦∀𝑦𝜑 |
| 14 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑦 𝑧 = 𝑤 |
| 15 | 13, 14 | nfim 1896 |
. . . . . 6
⊢
Ⅎ𝑦(∀𝑦𝜑 → 𝑧 = 𝑤) |
| 16 | 15 | nfal 2323 |
. . . . 5
⊢
Ⅎ𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) |
| 17 | | equequ2 2025 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → (𝑧 = 𝑦 ↔ 𝑧 = 𝑤)) |
| 18 | 17 | imbi2d 340 |
. . . . . 6
⊢ (𝑦 = 𝑤 → ((∀𝑦𝜑 → 𝑧 = 𝑦) ↔ (∀𝑦𝜑 → 𝑧 = 𝑤))) |
| 19 | 18 | albidv 1920 |
. . . . 5
⊢ (𝑦 = 𝑤 → (∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) ↔ ∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤))) |
| 20 | 12, 16, 19 | cbvexv1 2344 |
. . . 4
⊢
(∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) ↔ ∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤)) |
| 21 | 11, 20 | sylib 218 |
. . 3
⊢
(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤)) |
| 22 | 21 | imim1i 63 |
. 2
⊢
((∃𝑤∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑤) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) → (∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) |
| 23 | 7, 22 | eximii 1837 |
1
⊢
∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |