| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axrep3 | Structured version Visualization version GIF version | ||
| Description: Axiom of Replacement slightly strengthened from axrep2 5282; 𝑤 may occur free in 𝜑. (Contributed by NM, 2-Jan-1997.) Remove dependency on ax-13 2377. (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| axrep3 | ⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 2150 | . . . 4 ⊢ Ⅎ𝑦∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) | |
| 2 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑦 𝑧 ∈ 𝑥 | |
| 3 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝑥 ∈ 𝑤 | |
| 4 | nfa1 2151 | . . . . . . . 8 ⊢ Ⅎ𝑦∀𝑦𝜑 | |
| 5 | 3, 4 | nfan 1899 | . . . . . . 7 ⊢ Ⅎ𝑦(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑) |
| 6 | 5 | nfex 2324 | . . . . . 6 ⊢ Ⅎ𝑦∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑) |
| 7 | 2, 6 | nfbi 1903 | . . . . 5 ⊢ Ⅎ𝑦(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑)) |
| 8 | 7 | nfal 2323 | . . . 4 ⊢ Ⅎ𝑦∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑)) |
| 9 | 1, 8 | nfim 1896 | . . 3 ⊢ Ⅎ𝑦(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) |
| 10 | 9 | nfex 2324 | . 2 ⊢ Ⅎ𝑦∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) |
| 11 | axreplem 5281 | . 2 ⊢ (𝑦 = 𝑤 → (∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) ↔ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))))) | |
| 12 | axrep2 5282 | . 2 ⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) | |
| 13 | 10, 11, 12 | chvarfv 2240 | 1 ⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-rep 5279 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: axrep4OLD 5286 |
| Copyright terms: Public domain | W3C validator |