Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axrep3 | Structured version Visualization version GIF version |
Description: Axiom of Replacement slightly strengthened from axrep2 5163; 𝑤 may occur free in 𝜑. (Contributed by NM, 2-Jan-1997.) Remove dependency on ax-13 2379. (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
axrep3 | ⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 2151 | . . . 4 ⊢ Ⅎ𝑦∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) | |
2 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑦 𝑧 ∈ 𝑥 | |
3 | nfv 1915 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝑥 ∈ 𝑤 | |
4 | nfa1 2152 | . . . . . . . 8 ⊢ Ⅎ𝑦∀𝑦𝜑 | |
5 | 3, 4 | nfan 1900 | . . . . . . 7 ⊢ Ⅎ𝑦(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑) |
6 | 5 | nfex 2332 | . . . . . 6 ⊢ Ⅎ𝑦∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑) |
7 | 2, 6 | nfbi 1904 | . . . . 5 ⊢ Ⅎ𝑦(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑)) |
8 | 7 | nfal 2331 | . . . 4 ⊢ Ⅎ𝑦∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑)) |
9 | 1, 8 | nfim 1897 | . . 3 ⊢ Ⅎ𝑦(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) |
10 | 9 | nfex 2332 | . 2 ⊢ Ⅎ𝑦∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) |
11 | axreplem 5162 | . 2 ⊢ (𝑦 = 𝑤 → (∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) ↔ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))))) | |
12 | axrep2 5163 | . 2 ⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) | |
13 | 10, 11, 12 | chvarfv 2240 | 1 ⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1536 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-rep 5160 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-nf 1786 |
This theorem is referenced by: axrep4 5165 |
Copyright terms: Public domain | W3C validator |