Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axrep3 | Structured version Visualization version GIF version |
Description: Axiom of Replacement slightly strengthened from axrep2 5208; 𝑤 may occur free in 𝜑. (Contributed by NM, 2-Jan-1997.) Remove dependency on ax-13 2372. (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
axrep3 | ⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 2149 | . . . 4 ⊢ Ⅎ𝑦∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) | |
2 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑦 𝑧 ∈ 𝑥 | |
3 | nfv 1918 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝑥 ∈ 𝑤 | |
4 | nfa1 2150 | . . . . . . . 8 ⊢ Ⅎ𝑦∀𝑦𝜑 | |
5 | 3, 4 | nfan 1903 | . . . . . . 7 ⊢ Ⅎ𝑦(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑) |
6 | 5 | nfex 2322 | . . . . . 6 ⊢ Ⅎ𝑦∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑) |
7 | 2, 6 | nfbi 1907 | . . . . 5 ⊢ Ⅎ𝑦(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑)) |
8 | 7 | nfal 2321 | . . . 4 ⊢ Ⅎ𝑦∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑)) |
9 | 1, 8 | nfim 1900 | . . 3 ⊢ Ⅎ𝑦(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) |
10 | 9 | nfex 2322 | . 2 ⊢ Ⅎ𝑦∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) |
11 | axreplem 5207 | . 2 ⊢ (𝑦 = 𝑤 → (∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) ↔ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))))) | |
12 | axrep2 5208 | . 2 ⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) | |
13 | 10, 11, 12 | chvarfv 2236 | 1 ⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-rep 5205 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 |
This theorem is referenced by: axrep4 5210 |
Copyright terms: Public domain | W3C validator |