MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiun Structured version   Visualization version   GIF version

Theorem fiun 7759
Description: The union of a chain (with respect to inclusion) of functions is a function. Analogous to f1iun 7760. (Contributed by AV, 6-Oct-2023.)
Hypotheses
Ref Expression
fiun.1 (𝑥 = 𝑦𝐵 = 𝐶)
fiun.2 𝐵 ∈ V
Assertion
Ref Expression
fiun (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶   𝑥,𝑦   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑦)

Proof of Theorem fiun
Dummy variables 𝑣 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3426 . . . . . . . 8 𝑢 ∈ V
2 eqeq1 2742 . . . . . . . . 9 (𝑧 = 𝑢 → (𝑧 = 𝐵𝑢 = 𝐵))
32rexbidv 3225 . . . . . . . 8 (𝑧 = 𝑢 → (∃𝑥𝐴 𝑧 = 𝐵 ↔ ∃𝑥𝐴 𝑢 = 𝐵))
41, 3elab 3602 . . . . . . 7 (𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ↔ ∃𝑥𝐴 𝑢 = 𝐵)
5 r19.29 3183 . . . . . . . 8 ((∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ ∃𝑥𝐴 𝑢 = 𝐵) → ∃𝑥𝐴 ((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵))
6 nfv 1918 . . . . . . . . . 10 𝑥Fun 𝑢
7 nfre1 3234 . . . . . . . . . . . 12 𝑥𝑥𝐴 𝑧 = 𝐵
87nfab 2912 . . . . . . . . . . 11 𝑥{𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
9 nfv 1918 . . . . . . . . . . 11 𝑥(𝑢𝑣𝑣𝑢)
108, 9nfralw 3149 . . . . . . . . . 10 𝑥𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)
116, 10nfan 1903 . . . . . . . . 9 𝑥(Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))
12 ffun 6587 . . . . . . . . . . . . 13 (𝐵:𝐷𝑆 → Fun 𝐵)
13 funeq 6438 . . . . . . . . . . . . 13 (𝑢 = 𝐵 → (Fun 𝑢 ↔ Fun 𝐵))
14 bianir 1055 . . . . . . . . . . . . 13 ((Fun 𝐵 ∧ (Fun 𝑢 ↔ Fun 𝐵)) → Fun 𝑢)
1512, 13, 14syl2an 595 . . . . . . . . . . . 12 ((𝐵:𝐷𝑆𝑢 = 𝐵) → Fun 𝑢)
1615adantlr 711 . . . . . . . . . . 11 (((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → Fun 𝑢)
17 fiun.1 . . . . . . . . . . . 12 (𝑥 = 𝑦𝐵 = 𝐶)
1817fiunlem 7758 . . . . . . . . . . 11 (((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))
1916, 18jca 511 . . . . . . . . . 10 (((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
2019a1i 11 . . . . . . . . 9 (𝑥𝐴 → (((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))))
2111, 20rexlimi 3243 . . . . . . . 8 (∃𝑥𝐴 ((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
225, 21syl 17 . . . . . . 7 ((∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ ∃𝑥𝐴 𝑢 = 𝐵) → (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
234, 22sylan2b 593 . . . . . 6 ((∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
2423ralrimiva 3107 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ∀𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
25 fununi 6493 . . . . 5 (∀𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)) → Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
2624, 25syl 17 . . . 4 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
27 fiun.2 . . . . . 6 𝐵 ∈ V
2827dfiun2 4959 . . . . 5 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
2928funeqi 6439 . . . 4 (Fun 𝑥𝐴 𝐵 ↔ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
3026, 29sylibr 233 . . 3 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun 𝑥𝐴 𝐵)
311eldm2 5799 . . . . . . . 8 (𝑢 ∈ dom 𝐵 ↔ ∃𝑣𝑢, 𝑣⟩ ∈ 𝐵)
32 fdm 6593 . . . . . . . . 9 (𝐵:𝐷𝑆 → dom 𝐵 = 𝐷)
3332eleq2d 2824 . . . . . . . 8 (𝐵:𝐷𝑆 → (𝑢 ∈ dom 𝐵𝑢𝐷))
3431, 33bitr3id 284 . . . . . . 7 (𝐵:𝐷𝑆 → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷))
3534adantr 480 . . . . . 6 ((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷))
3635ralrexbid 3250 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵 ↔ ∃𝑥𝐴 𝑢𝐷))
37 eliun 4925 . . . . . . 7 (⟨𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
3837exbii 1851 . . . . . 6 (∃𝑣𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑣𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
391eldm2 5799 . . . . . 6 (𝑢 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑣𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵)
40 rexcom4 3179 . . . . . 6 (∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵 ↔ ∃𝑣𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
4138, 39, 403bitr4i 302 . . . . 5 (𝑢 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵)
42 eliun 4925 . . . . 5 (𝑢 𝑥𝐴 𝐷 ↔ ∃𝑥𝐴 𝑢𝐷)
4336, 41, 423bitr4g 313 . . . 4 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (𝑢 ∈ dom 𝑥𝐴 𝐵𝑢 𝑥𝐴 𝐷))
4443eqrdv 2736 . . 3 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → dom 𝑥𝐴 𝐵 = 𝑥𝐴 𝐷)
45 df-fn 6421 . . 3 ( 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷 ↔ (Fun 𝑥𝐴 𝐵 ∧ dom 𝑥𝐴 𝐵 = 𝑥𝐴 𝐷))
4630, 44, 45sylanbrc 582 . 2 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷)
47 rniun 6040 . . 3 ran 𝑥𝐴 𝐵 = 𝑥𝐴 ran 𝐵
48 frn 6591 . . . . . 6 (𝐵:𝐷𝑆 → ran 𝐵𝑆)
4948adantr 480 . . . . 5 ((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ran 𝐵𝑆)
5049ralimi 3086 . . . 4 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ∀𝑥𝐴 ran 𝐵𝑆)
51 iunss 4971 . . . 4 ( 𝑥𝐴 ran 𝐵𝑆 ↔ ∀𝑥𝐴 ran 𝐵𝑆)
5250, 51sylibr 233 . . 3 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 ran 𝐵𝑆)
5347, 52eqsstrid 3965 . 2 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ran 𝑥𝐴 𝐵𝑆)
54 df-f 6422 . 2 ( 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆 ↔ ( 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷 ∧ ran 𝑥𝐴 𝐵𝑆))
5546, 53, 54sylanbrc 582 1 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wral 3063  wrex 3064  Vcvv 3422  wss 3883  cop 4564   cuni 4836   ciun 4921  dom cdm 5580  ran crn 5581  Fun wfun 6412   Fn wfn 6413  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-id 5480  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  satfun  33273
  Copyright terms: Public domain W3C validator