Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiun Structured version   Visualization version   GIF version

Theorem fiun 7628
 Description: The union of a chain (with respect to inclusion) of functions is a function. Analogous to f1iun 7629. (Contributed by AV, 6-Oct-2023.)
Hypotheses
Ref Expression
fiun.1 (𝑥 = 𝑦𝐵 = 𝐶)
fiun.2 𝐵 ∈ V
Assertion
Ref Expression
fiun (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶   𝑥,𝑦   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑦)

Proof of Theorem fiun
Dummy variables 𝑣 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3444 . . . . . . . 8 𝑢 ∈ V
2 eqeq1 2802 . . . . . . . . 9 (𝑧 = 𝑢 → (𝑧 = 𝐵𝑢 = 𝐵))
32rexbidv 3256 . . . . . . . 8 (𝑧 = 𝑢 → (∃𝑥𝐴 𝑧 = 𝐵 ↔ ∃𝑥𝐴 𝑢 = 𝐵))
41, 3elab 3615 . . . . . . 7 (𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ↔ ∃𝑥𝐴 𝑢 = 𝐵)
5 r19.29 3216 . . . . . . . 8 ((∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ ∃𝑥𝐴 𝑢 = 𝐵) → ∃𝑥𝐴 ((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵))
6 nfv 1915 . . . . . . . . . 10 𝑥Fun 𝑢
7 nfre1 3265 . . . . . . . . . . . 12 𝑥𝑥𝐴 𝑧 = 𝐵
87nfab 2961 . . . . . . . . . . 11 𝑥{𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
9 nfv 1915 . . . . . . . . . . 11 𝑥(𝑢𝑣𝑣𝑢)
108, 9nfralw 3189 . . . . . . . . . 10 𝑥𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)
116, 10nfan 1900 . . . . . . . . 9 𝑥(Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))
12 ffun 6490 . . . . . . . . . . . . 13 (𝐵:𝐷𝑆 → Fun 𝐵)
13 funeq 6344 . . . . . . . . . . . . 13 (𝑢 = 𝐵 → (Fun 𝑢 ↔ Fun 𝐵))
14 bianir 1054 . . . . . . . . . . . . 13 ((Fun 𝐵 ∧ (Fun 𝑢 ↔ Fun 𝐵)) → Fun 𝑢)
1512, 13, 14syl2an 598 . . . . . . . . . . . 12 ((𝐵:𝐷𝑆𝑢 = 𝐵) → Fun 𝑢)
1615adantlr 714 . . . . . . . . . . 11 (((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → Fun 𝑢)
17 fiun.1 . . . . . . . . . . . 12 (𝑥 = 𝑦𝐵 = 𝐶)
1817fiunlem 7627 . . . . . . . . . . 11 (((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))
1916, 18jca 515 . . . . . . . . . 10 (((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
2019a1i 11 . . . . . . . . 9 (𝑥𝐴 → (((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))))
2111, 20rexlimi 3274 . . . . . . . 8 (∃𝑥𝐴 ((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
225, 21syl 17 . . . . . . 7 ((∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ ∃𝑥𝐴 𝑢 = 𝐵) → (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
234, 22sylan2b 596 . . . . . 6 ((∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
2423ralrimiva 3149 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ∀𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
25 fununi 6399 . . . . 5 (∀𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)) → Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
2624, 25syl 17 . . . 4 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
27 fiun.2 . . . . . 6 𝐵 ∈ V
2827dfiun2 4920 . . . . 5 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
2928funeqi 6345 . . . 4 (Fun 𝑥𝐴 𝐵 ↔ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
3026, 29sylibr 237 . . 3 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun 𝑥𝐴 𝐵)
311eldm2 5734 . . . . . . . 8 (𝑢 ∈ dom 𝐵 ↔ ∃𝑣𝑢, 𝑣⟩ ∈ 𝐵)
32 fdm 6495 . . . . . . . . 9 (𝐵:𝐷𝑆 → dom 𝐵 = 𝐷)
3332eleq2d 2875 . . . . . . . 8 (𝐵:𝐷𝑆 → (𝑢 ∈ dom 𝐵𝑢𝐷))
3431, 33bitr3id 288 . . . . . . 7 (𝐵:𝐷𝑆 → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷))
3534adantr 484 . . . . . 6 ((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷))
3635ralrexbid 3281 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵 ↔ ∃𝑥𝐴 𝑢𝐷))
37 eliun 4885 . . . . . . 7 (⟨𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
3837exbii 1849 . . . . . 6 (∃𝑣𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑣𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
391eldm2 5734 . . . . . 6 (𝑢 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑣𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵)
40 rexcom4 3212 . . . . . 6 (∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵 ↔ ∃𝑣𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
4138, 39, 403bitr4i 306 . . . . 5 (𝑢 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵)
42 eliun 4885 . . . . 5 (𝑢 𝑥𝐴 𝐷 ↔ ∃𝑥𝐴 𝑢𝐷)
4336, 41, 423bitr4g 317 . . . 4 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (𝑢 ∈ dom 𝑥𝐴 𝐵𝑢 𝑥𝐴 𝐷))
4443eqrdv 2796 . . 3 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → dom 𝑥𝐴 𝐵 = 𝑥𝐴 𝐷)
45 df-fn 6327 . . 3 ( 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷 ↔ (Fun 𝑥𝐴 𝐵 ∧ dom 𝑥𝐴 𝐵 = 𝑥𝐴 𝐷))
4630, 44, 45sylanbrc 586 . 2 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷)
47 rniun 5973 . . 3 ran 𝑥𝐴 𝐵 = 𝑥𝐴 ran 𝐵
48 frn 6493 . . . . . 6 (𝐵:𝐷𝑆 → ran 𝐵𝑆)
4948adantr 484 . . . . 5 ((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ran 𝐵𝑆)
5049ralimi 3128 . . . 4 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ∀𝑥𝐴 ran 𝐵𝑆)
51 iunss 4932 . . . 4 ( 𝑥𝐴 ran 𝐵𝑆 ↔ ∀𝑥𝐴 ran 𝐵𝑆)
5250, 51sylibr 237 . . 3 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 ran 𝐵𝑆)
5347, 52eqsstrid 3963 . 2 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ran 𝑥𝐴 𝐵𝑆)
54 df-f 6328 . 2 ( 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆 ↔ ( 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷 ∧ ran 𝑥𝐴 𝐵𝑆))
5546, 53, 54sylanbrc 586 1 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538  ∃wex 1781   ∈ wcel 2111  {cab 2776  ∀wral 3106  ∃wrex 3107  Vcvv 3441   ⊆ wss 3881  ⟨cop 4531  ∪ cuni 4800  ∪ ciun 4881  dom cdm 5519  ran crn 5520  Fun wfun 6318   Fn wfn 6319  ⟶wf 6320 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-id 5425  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-fun 6326  df-fn 6327  df-f 6328 This theorem is referenced by:  satfun  32783
 Copyright terms: Public domain W3C validator