MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiun Structured version   Visualization version   GIF version

Theorem fiun 7875
Description: The union of a chain (with respect to inclusion) of functions is a function. Analogous to f1iun 7876. (Contributed by AV, 6-Oct-2023.)
Hypotheses
Ref Expression
fiun.1 (𝑥 = 𝑦𝐵 = 𝐶)
fiun.2 𝐵 ∈ V
Assertion
Ref Expression
fiun (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶   𝑥,𝑦   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝑆(𝑦)

Proof of Theorem fiun
Dummy variables 𝑣 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . . . . . 8 𝑢 ∈ V
2 eqeq1 2735 . . . . . . . . 9 (𝑧 = 𝑢 → (𝑧 = 𝐵𝑢 = 𝐵))
32rexbidv 3156 . . . . . . . 8 (𝑧 = 𝑢 → (∃𝑥𝐴 𝑧 = 𝐵 ↔ ∃𝑥𝐴 𝑢 = 𝐵))
41, 3elab 3630 . . . . . . 7 (𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ↔ ∃𝑥𝐴 𝑢 = 𝐵)
5 r19.29 3095 . . . . . . . 8 ((∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ ∃𝑥𝐴 𝑢 = 𝐵) → ∃𝑥𝐴 ((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵))
6 nfv 1915 . . . . . . . . . 10 𝑥Fun 𝑢
7 nfre1 3257 . . . . . . . . . . . 12 𝑥𝑥𝐴 𝑧 = 𝐵
87nfab 2900 . . . . . . . . . . 11 𝑥{𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
9 nfv 1915 . . . . . . . . . . 11 𝑥(𝑢𝑣𝑣𝑢)
108, 9nfralw 3279 . . . . . . . . . 10 𝑥𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)
116, 10nfan 1900 . . . . . . . . 9 𝑥(Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))
12 ffun 6654 . . . . . . . . . . . . 13 (𝐵:𝐷𝑆 → Fun 𝐵)
13 funeq 6501 . . . . . . . . . . . . 13 (𝑢 = 𝐵 → (Fun 𝑢 ↔ Fun 𝐵))
14 bianir 1058 . . . . . . . . . . . . 13 ((Fun 𝐵 ∧ (Fun 𝑢 ↔ Fun 𝐵)) → Fun 𝑢)
1512, 13, 14syl2an 596 . . . . . . . . . . . 12 ((𝐵:𝐷𝑆𝑢 = 𝐵) → Fun 𝑢)
1615adantlr 715 . . . . . . . . . . 11 (((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → Fun 𝑢)
17 fiun.1 . . . . . . . . . . . 12 (𝑥 = 𝑦𝐵 = 𝐶)
1817fiunlem 7874 . . . . . . . . . . 11 (((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))
1916, 18jca 511 . . . . . . . . . 10 (((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
2019a1i 11 . . . . . . . . 9 (𝑥𝐴 → (((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢))))
2111, 20rexlimi 3232 . . . . . . . 8 (∃𝑥𝐴 ((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 = 𝐵) → (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
225, 21syl 17 . . . . . . 7 ((∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ ∃𝑥𝐴 𝑢 = 𝐵) → (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
234, 22sylan2b 594 . . . . . 6 ((∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
2423ralrimiva 3124 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ∀𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)))
25 fununi 6556 . . . . 5 (∀𝑢 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (Fun 𝑢 ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} (𝑢𝑣𝑣𝑢)) → Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
2624, 25syl 17 . . . 4 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
27 fiun.2 . . . . . 6 𝐵 ∈ V
2827dfiun2 4980 . . . . 5 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
2928funeqi 6502 . . . 4 (Fun 𝑥𝐴 𝐵 ↔ Fun {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
3026, 29sylibr 234 . . 3 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → Fun 𝑥𝐴 𝐵)
311eldm2 5840 . . . . . . . 8 (𝑢 ∈ dom 𝐵 ↔ ∃𝑣𝑢, 𝑣⟩ ∈ 𝐵)
32 fdm 6660 . . . . . . . . 9 (𝐵:𝐷𝑆 → dom 𝐵 = 𝐷)
3332eleq2d 2817 . . . . . . . 8 (𝐵:𝐷𝑆 → (𝑢 ∈ dom 𝐵𝑢𝐷))
3431, 33bitr3id 285 . . . . . . 7 (𝐵:𝐷𝑆 → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷))
3534adantr 480 . . . . . 6 ((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (∃𝑣𝑢, 𝑣⟩ ∈ 𝐵𝑢𝐷))
3635ralrexbid 3089 . . . . 5 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵 ↔ ∃𝑥𝐴 𝑢𝐷))
37 eliun 4943 . . . . . . 7 (⟨𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
3837exbii 1849 . . . . . 6 (∃𝑣𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑣𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
391eldm2 5840 . . . . . 6 (𝑢 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑣𝑢, 𝑣⟩ ∈ 𝑥𝐴 𝐵)
40 rexcom4 3259 . . . . . 6 (∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵 ↔ ∃𝑣𝑥𝐴𝑢, 𝑣⟩ ∈ 𝐵)
4138, 39, 403bitr4i 303 . . . . 5 (𝑢 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑣𝑢, 𝑣⟩ ∈ 𝐵)
42 eliun 4943 . . . . 5 (𝑢 𝑥𝐴 𝐷 ↔ ∃𝑥𝐴 𝑢𝐷)
4336, 41, 423bitr4g 314 . . . 4 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → (𝑢 ∈ dom 𝑥𝐴 𝐵𝑢 𝑥𝐴 𝐷))
4443eqrdv 2729 . . 3 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → dom 𝑥𝐴 𝐵 = 𝑥𝐴 𝐷)
45 df-fn 6484 . . 3 ( 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷 ↔ (Fun 𝑥𝐴 𝐵 ∧ dom 𝑥𝐴 𝐵 = 𝑥𝐴 𝐷))
4630, 44, 45sylanbrc 583 . 2 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷)
47 rniun 6094 . . 3 ran 𝑥𝐴 𝐵 = 𝑥𝐴 ran 𝐵
48 frn 6658 . . . . . 6 (𝐵:𝐷𝑆 → ran 𝐵𝑆)
4948adantr 480 . . . . 5 ((𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ran 𝐵𝑆)
5049ralimi 3069 . . . 4 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ∀𝑥𝐴 ran 𝐵𝑆)
51 iunss 4992 . . . 4 ( 𝑥𝐴 ran 𝐵𝑆 ↔ ∀𝑥𝐴 ran 𝐵𝑆)
5250, 51sylibr 234 . . 3 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 ran 𝐵𝑆)
5347, 52eqsstrid 3968 . 2 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → ran 𝑥𝐴 𝐵𝑆)
54 df-f 6485 . 2 ( 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆 ↔ ( 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷 ∧ ran 𝑥𝐴 𝐵𝑆))
5546, 53, 54sylanbrc 583 1 (∀𝑥𝐴 (𝐵:𝐷𝑆 ∧ ∀𝑦𝐴 (𝐵𝐶𝐶𝐵)) → 𝑥𝐴 𝐵: 𝑥𝐴 𝐷𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  wrex 3056  Vcvv 3436  wss 3897  cop 4579   cuni 4856   ciun 4939  dom cdm 5614  ran crn 5615  Fun wfun 6475   Fn wfn 6476  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-fun 6483  df-fn 6484  df-f 6485
This theorem is referenced by:  satfun  35455
  Copyright terms: Public domain W3C validator