MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppimacnv Structured version   Visualization version   GIF version

Theorem suppimacnv 8215
Description: Support sets of functions expressed by inverse images. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 7-Apr-2019.)
Assertion
Ref Expression
suppimacnv ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = (𝑅 “ (V ∖ {𝑍})))

Proof of Theorem suppimacnv
Dummy variables 𝑥 𝑦 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5170 . . . . . . . 8 (𝑡 = 𝑠 → (𝑥𝑅𝑡𝑥𝑅𝑠))
21cbvexvw 2036 . . . . . . 7 (∃𝑡 𝑥𝑅𝑡 ↔ ∃𝑠 𝑥𝑅𝑠)
3 breq2 5170 . . . . . . . . . . . . . 14 (𝑠 = 𝑍 → (𝑥𝑅𝑠𝑥𝑅𝑍))
43anbi1d 630 . . . . . . . . . . . . 13 (𝑠 = 𝑍 → ((𝑥𝑅𝑠 ∧ (𝑥𝑅𝑡𝑡𝑍)) ↔ (𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍))))
5 bianir 1059 . . . . . . . . . . . . . . . . . 18 ((𝑡𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → 𝑥𝑅𝑡)
6 vex 3492 . . . . . . . . . . . . . . . . . . . 20 𝑡 ∈ V
7 breq2 5170 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑡 → (𝑥𝑅𝑦𝑥𝑅𝑡))
8 neeq1 3009 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑡 → (𝑦𝑍𝑡𝑍))
97, 8anbi12d 631 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑡 → ((𝑥𝑅𝑦𝑦𝑍) ↔ (𝑥𝑅𝑡𝑡𝑍)))
106, 9spcev 3619 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑅𝑡𝑡𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
1110ex 412 . . . . . . . . . . . . . . . . . 18 (𝑥𝑅𝑡 → (𝑡𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
125, 11syl 17 . . . . . . . . . . . . . . . . 17 ((𝑡𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → (𝑡𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
1312ex 412 . . . . . . . . . . . . . . . 16 (𝑡𝑍 → ((𝑥𝑅𝑡𝑡𝑍) → (𝑡𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
1413pm2.43a 54 . . . . . . . . . . . . . . 15 (𝑡𝑍 → ((𝑥𝑅𝑡𝑡𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
1514adantld 490 . . . . . . . . . . . . . 14 (𝑡𝑍 → ((𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
16 nne 2950 . . . . . . . . . . . . . . . 16 𝑡𝑍𝑡 = 𝑍)
17 notbi 319 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝑅𝑡𝑡𝑍) ↔ (¬ 𝑥𝑅𝑡 ↔ ¬ 𝑡𝑍))
18 bianir 1059 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ 𝑡𝑍 ∧ (¬ 𝑥𝑅𝑡 ↔ ¬ 𝑡𝑍)) → ¬ 𝑥𝑅𝑡)
19 breq2 5170 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑍 = 𝑡 → (𝑥𝑅𝑍𝑥𝑅𝑡))
2019eqcoms 2748 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑍 → (𝑥𝑅𝑍𝑥𝑅𝑡))
21 pm2.24 124 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝑅𝑡 → (¬ 𝑥𝑅𝑡 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
2220, 21biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑍 → (𝑥𝑅𝑍 → (¬ 𝑥𝑅𝑡 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
2322com13 88 . . . . . . . . . . . . . . . . . . . . . 22 𝑥𝑅𝑡 → (𝑥𝑅𝑍 → (𝑡 = 𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
2418, 23syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((¬ 𝑡𝑍 ∧ (¬ 𝑥𝑅𝑡 ↔ ¬ 𝑡𝑍)) → (𝑥𝑅𝑍 → (𝑡 = 𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
2524ex 412 . . . . . . . . . . . . . . . . . . . 20 𝑡𝑍 → ((¬ 𝑥𝑅𝑡 ↔ ¬ 𝑡𝑍) → (𝑥𝑅𝑍 → (𝑡 = 𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))))
2617, 25biimtrid 242 . . . . . . . . . . . . . . . . . . 19 𝑡𝑍 → ((𝑥𝑅𝑡𝑡𝑍) → (𝑥𝑅𝑍 → (𝑡 = 𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))))
2726com13 88 . . . . . . . . . . . . . . . . . 18 (𝑥𝑅𝑍 → ((𝑥𝑅𝑡𝑡𝑍) → (¬ 𝑡𝑍 → (𝑡 = 𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))))
2827imp 406 . . . . . . . . . . . . . . . . 17 ((𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → (¬ 𝑡𝑍 → (𝑡 = 𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
2928com13 88 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑍 → (¬ 𝑡𝑍 → ((𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
3016, 29sylbi 217 . . . . . . . . . . . . . . 15 𝑡𝑍 → (¬ 𝑡𝑍 → ((𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
3130pm2.43i 52 . . . . . . . . . . . . . 14 𝑡𝑍 → ((𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
3215, 31pm2.61i 182 . . . . . . . . . . . . 13 ((𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
334, 32biimtrdi 253 . . . . . . . . . . . 12 (𝑠 = 𝑍 → ((𝑥𝑅𝑠 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
34 vex 3492 . . . . . . . . . . . . . . . 16 𝑠 ∈ V
35 breq2 5170 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑠 → (𝑥𝑅𝑦𝑥𝑅𝑠))
36 neeq1 3009 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑠 → (𝑦𝑍𝑠𝑍))
3735, 36anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑠 → ((𝑥𝑅𝑦𝑦𝑍) ↔ (𝑥𝑅𝑠𝑠𝑍)))
3834, 37spcev 3619 . . . . . . . . . . . . . . 15 ((𝑥𝑅𝑠𝑠𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
3938ex 412 . . . . . . . . . . . . . 14 (𝑥𝑅𝑠 → (𝑠𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4039adantr 480 . . . . . . . . . . . . 13 ((𝑥𝑅𝑠 ∧ (𝑥𝑅𝑡𝑡𝑍)) → (𝑠𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4140com12 32 . . . . . . . . . . . 12 (𝑠𝑍 → ((𝑥𝑅𝑠 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4233, 41pm2.61ine 3031 . . . . . . . . . . 11 ((𝑥𝑅𝑠 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
4342expcom 413 . . . . . . . . . 10 ((𝑥𝑅𝑡𝑡𝑍) → (𝑥𝑅𝑠 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4443exlimiv 1929 . . . . . . . . 9 (∃𝑡(𝑥𝑅𝑡𝑡𝑍) → (𝑥𝑅𝑠 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4544com12 32 . . . . . . . 8 (𝑥𝑅𝑠 → (∃𝑡(𝑥𝑅𝑡𝑡𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4645exlimiv 1929 . . . . . . 7 (∃𝑠 𝑥𝑅𝑠 → (∃𝑡(𝑥𝑅𝑡𝑡𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
472, 46sylbi 217 . . . . . 6 (∃𝑡 𝑥𝑅𝑡 → (∃𝑡(𝑥𝑅𝑡𝑡𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4847imp 406 . . . . 5 ((∃𝑡 𝑥𝑅𝑡 ∧ ∃𝑡(𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
4948a1i 11 . . . 4 ((𝑅𝑉𝑍𝑊) → ((∃𝑡 𝑥𝑅𝑡 ∧ ∃𝑡(𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
5049ss2abdv 4089 . . 3 ((𝑅𝑉𝑍𝑊) → {𝑥 ∣ (∃𝑡 𝑥𝑅𝑡 ∧ ∃𝑡(𝑥𝑅𝑡𝑡𝑍))} ⊆ {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)})
51 suppvalbr 8205 . . 3 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑡 𝑥𝑅𝑡 ∧ ∃𝑡(𝑥𝑅𝑡𝑡𝑍))})
52 cnvimadfsn 8213 . . . 4 (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)}
5352a1i 11 . . 3 ((𝑅𝑉𝑍𝑊) → (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)})
5450, 51, 533sstr4d 4056 . 2 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) ⊆ (𝑅 “ (V ∖ {𝑍})))
55 suppimacnvss 8214 . 2 ((𝑅𝑉𝑍𝑊) → (𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍))
5654, 55eqssd 4026 1 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = (𝑅 “ (V ∖ {𝑍})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  Vcvv 3488  cdif 3973  {csn 4648   class class class wbr 5166  ccnv 5699  cima 5703  (class class class)co 7448   supp csupp 8201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-supp 8202
This theorem is referenced by:  fsuppeq  8216  fsuppeqg  8217  suppun  8225  mptsuppdifd  8227  suppco  8247  fidmfisupp  9442  fdmfisuppfi  9443  fsuppun  9456  fsuppco  9471  gsumval3a  19945  gsumzf1o  19954  gsumzaddlem  19963  gsumzmhm  19979  gsumzoppg  19986  deg1val  26155  suppss3  32738  ffsrn  32743  fpwrelmapffslem  32746  sitgclg  34307  eulerpartlemmf  34340  eulerpartlemgf  34344
  Copyright terms: Public domain W3C validator