MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppimacnv Structured version   Visualization version   GIF version

Theorem suppimacnv 7990
Description: Support sets of functions expressed by inverse images. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 7-Apr-2019.)
Assertion
Ref Expression
suppimacnv ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = (𝑅 “ (V ∖ {𝑍})))

Proof of Theorem suppimacnv
Dummy variables 𝑥 𝑦 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5078 . . . . . . . 8 (𝑡 = 𝑠 → (𝑥𝑅𝑡𝑥𝑅𝑠))
21cbvexvw 2040 . . . . . . 7 (∃𝑡 𝑥𝑅𝑡 ↔ ∃𝑠 𝑥𝑅𝑠)
3 breq2 5078 . . . . . . . . . . . . . 14 (𝑠 = 𝑍 → (𝑥𝑅𝑠𝑥𝑅𝑍))
43anbi1d 630 . . . . . . . . . . . . 13 (𝑠 = 𝑍 → ((𝑥𝑅𝑠 ∧ (𝑥𝑅𝑡𝑡𝑍)) ↔ (𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍))))
5 bianir 1056 . . . . . . . . . . . . . . . . . 18 ((𝑡𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → 𝑥𝑅𝑡)
6 vex 3436 . . . . . . . . . . . . . . . . . . . 20 𝑡 ∈ V
7 breq2 5078 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑡 → (𝑥𝑅𝑦𝑥𝑅𝑡))
8 neeq1 3006 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑡 → (𝑦𝑍𝑡𝑍))
97, 8anbi12d 631 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑡 → ((𝑥𝑅𝑦𝑦𝑍) ↔ (𝑥𝑅𝑡𝑡𝑍)))
106, 9spcev 3545 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑅𝑡𝑡𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
1110ex 413 . . . . . . . . . . . . . . . . . 18 (𝑥𝑅𝑡 → (𝑡𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
125, 11syl 17 . . . . . . . . . . . . . . . . 17 ((𝑡𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → (𝑡𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
1312ex 413 . . . . . . . . . . . . . . . 16 (𝑡𝑍 → ((𝑥𝑅𝑡𝑡𝑍) → (𝑡𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
1413pm2.43a 54 . . . . . . . . . . . . . . 15 (𝑡𝑍 → ((𝑥𝑅𝑡𝑡𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
1514adantld 491 . . . . . . . . . . . . . 14 (𝑡𝑍 → ((𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
16 nne 2947 . . . . . . . . . . . . . . . 16 𝑡𝑍𝑡 = 𝑍)
17 notbi 319 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝑅𝑡𝑡𝑍) ↔ (¬ 𝑥𝑅𝑡 ↔ ¬ 𝑡𝑍))
18 bianir 1056 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ 𝑡𝑍 ∧ (¬ 𝑥𝑅𝑡 ↔ ¬ 𝑡𝑍)) → ¬ 𝑥𝑅𝑡)
19 breq2 5078 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑍 = 𝑡 → (𝑥𝑅𝑍𝑥𝑅𝑡))
2019eqcoms 2746 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑍 → (𝑥𝑅𝑍𝑥𝑅𝑡))
21 pm2.24 124 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝑅𝑡 → (¬ 𝑥𝑅𝑡 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
2220, 21syl6bi 252 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑍 → (𝑥𝑅𝑍 → (¬ 𝑥𝑅𝑡 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
2322com13 88 . . . . . . . . . . . . . . . . . . . . . 22 𝑥𝑅𝑡 → (𝑥𝑅𝑍 → (𝑡 = 𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
2418, 23syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((¬ 𝑡𝑍 ∧ (¬ 𝑥𝑅𝑡 ↔ ¬ 𝑡𝑍)) → (𝑥𝑅𝑍 → (𝑡 = 𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
2524ex 413 . . . . . . . . . . . . . . . . . . . 20 𝑡𝑍 → ((¬ 𝑥𝑅𝑡 ↔ ¬ 𝑡𝑍) → (𝑥𝑅𝑍 → (𝑡 = 𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))))
2617, 25syl5bi 241 . . . . . . . . . . . . . . . . . . 19 𝑡𝑍 → ((𝑥𝑅𝑡𝑡𝑍) → (𝑥𝑅𝑍 → (𝑡 = 𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))))
2726com13 88 . . . . . . . . . . . . . . . . . 18 (𝑥𝑅𝑍 → ((𝑥𝑅𝑡𝑡𝑍) → (¬ 𝑡𝑍 → (𝑡 = 𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))))
2827imp 407 . . . . . . . . . . . . . . . . 17 ((𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → (¬ 𝑡𝑍 → (𝑡 = 𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
2928com13 88 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑍 → (¬ 𝑡𝑍 → ((𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
3016, 29sylbi 216 . . . . . . . . . . . . . . 15 𝑡𝑍 → (¬ 𝑡𝑍 → ((𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
3130pm2.43i 52 . . . . . . . . . . . . . 14 𝑡𝑍 → ((𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
3215, 31pm2.61i 182 . . . . . . . . . . . . 13 ((𝑥𝑅𝑍 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
334, 32syl6bi 252 . . . . . . . . . . . 12 (𝑠 = 𝑍 → ((𝑥𝑅𝑠 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
34 vex 3436 . . . . . . . . . . . . . . . 16 𝑠 ∈ V
35 breq2 5078 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑠 → (𝑥𝑅𝑦𝑥𝑅𝑠))
36 neeq1 3006 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑠 → (𝑦𝑍𝑠𝑍))
3735, 36anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑠 → ((𝑥𝑅𝑦𝑦𝑍) ↔ (𝑥𝑅𝑠𝑠𝑍)))
3834, 37spcev 3545 . . . . . . . . . . . . . . 15 ((𝑥𝑅𝑠𝑠𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
3938ex 413 . . . . . . . . . . . . . 14 (𝑥𝑅𝑠 → (𝑠𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4039adantr 481 . . . . . . . . . . . . 13 ((𝑥𝑅𝑠 ∧ (𝑥𝑅𝑡𝑡𝑍)) → (𝑠𝑍 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4140com12 32 . . . . . . . . . . . 12 (𝑠𝑍 → ((𝑥𝑅𝑠 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4233, 41pm2.61ine 3028 . . . . . . . . . . 11 ((𝑥𝑅𝑠 ∧ (𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
4342expcom 414 . . . . . . . . . 10 ((𝑥𝑅𝑡𝑡𝑍) → (𝑥𝑅𝑠 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4443exlimiv 1933 . . . . . . . . 9 (∃𝑡(𝑥𝑅𝑡𝑡𝑍) → (𝑥𝑅𝑠 → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4544com12 32 . . . . . . . 8 (𝑥𝑅𝑠 → (∃𝑡(𝑥𝑅𝑡𝑡𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4645exlimiv 1933 . . . . . . 7 (∃𝑠 𝑥𝑅𝑠 → (∃𝑡(𝑥𝑅𝑡𝑡𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
472, 46sylbi 216 . . . . . 6 (∃𝑡 𝑥𝑅𝑡 → (∃𝑡(𝑥𝑅𝑡𝑡𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
4847imp 407 . . . . 5 ((∃𝑡 𝑥𝑅𝑡 ∧ ∃𝑡(𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
4948a1i 11 . . . 4 ((𝑅𝑉𝑍𝑊) → ((∃𝑡 𝑥𝑅𝑡 ∧ ∃𝑡(𝑥𝑅𝑡𝑡𝑍)) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
5049ss2abdv 3997 . . 3 ((𝑅𝑉𝑍𝑊) → {𝑥 ∣ (∃𝑡 𝑥𝑅𝑡 ∧ ∃𝑡(𝑥𝑅𝑡𝑡𝑍))} ⊆ {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)})
51 suppvalbr 7981 . . 3 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑡 𝑥𝑅𝑡 ∧ ∃𝑡(𝑥𝑅𝑡𝑡𝑍))})
52 cnvimadfsn 7988 . . . 4 (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)}
5352a1i 11 . . 3 ((𝑅𝑉𝑍𝑊) → (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)})
5450, 51, 533sstr4d 3968 . 2 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) ⊆ (𝑅 “ (V ∖ {𝑍})))
55 suppimacnvss 7989 . 2 ((𝑅𝑉𝑍𝑊) → (𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍))
5654, 55eqssd 3938 1 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = (𝑅 “ (V ∖ {𝑍})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wne 2943  Vcvv 3432  cdif 3884  {csn 4561   class class class wbr 5074  ccnv 5588  cima 5592  (class class class)co 7275   supp csupp 7977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-supp 7978
This theorem is referenced by:  frnsuppeq  7991  frnsuppeqg  7992  suppun  8000  mptsuppdifd  8002  suppco  8022  fdmfisuppfi  9137  fsuppun  9147  fsuppco  9161  gsumval3a  19504  gsumzf1o  19513  gsumzaddlem  19522  gsumzmhm  19538  gsumzoppg  19545  deg1val  25261  suppss3  31059  ffsrn  31064  fpwrelmapffslem  31067  sitgclg  32309  eulerpartlemmf  32342  eulerpartlemgf  32346  fidmfisupp  42739
  Copyright terms: Public domain W3C validator