Proof of Theorem lgsqrmodndvds
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | lgsqrmod 27397 | . . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ ((𝐴
/L 𝑃) = 1
→ ∃𝑥 ∈
ℤ ((𝑥↑2) mod
𝑃) = (𝐴 mod 𝑃))) | 
| 2 | 1 | imp 406 | . . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) → ∃𝑥 ∈
ℤ ((𝑥↑2) mod
𝑃) = (𝐴 mod 𝑃)) | 
| 3 |  | eldifi 4130 | . . . . . . . . 9
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℙ) | 
| 4 |  | prmnn 16712 | . . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) | 
| 5 | 3, 4 | syl 17 | . . . . . . . 8
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℕ) | 
| 6 | 5 | ad3antlr 731 | . . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) ∧ 𝑥 ∈ ℤ)
→ 𝑃 ∈
ℕ) | 
| 7 |  | zsqcl 14170 | . . . . . . . 8
⊢ (𝑥 ∈ ℤ → (𝑥↑2) ∈
ℤ) | 
| 8 | 7 | adantl 481 | . . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) ∧ 𝑥 ∈ ℤ)
→ (𝑥↑2) ∈
ℤ) | 
| 9 |  | simplll 774 | . . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) ∧ 𝑥 ∈ ℤ)
→ 𝐴 ∈
ℤ) | 
| 10 |  | moddvds 16302 | . . . . . . 7
⊢ ((𝑃 ∈ ℕ ∧ (𝑥↑2) ∈ ℤ ∧
𝐴 ∈ ℤ) →
(((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴))) | 
| 11 | 6, 8, 9, 10 | syl3anc 1372 | . . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) ∧ 𝑥 ∈ ℤ)
→ (((𝑥↑2) mod
𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴))) | 
| 12 | 5 | nnzd 12642 | . . . . . . . . . . . . . 14
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℤ) | 
| 13 | 12 | ad3antlr 731 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) ∧ 𝑥 ∈ ℤ)
→ 𝑃 ∈
ℤ) | 
| 14 | 13, 8, 9 | 3jca 1128 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) ∧ 𝑥 ∈ ℤ)
→ (𝑃 ∈ ℤ
∧ (𝑥↑2) ∈
ℤ ∧ 𝐴 ∈
ℤ)) | 
| 15 | 14 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝑃 ∥ 𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈
ℤ)) | 
| 16 |  | dvdssub2 16339 | . . . . . . . . . . 11
⊢ (((𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧
𝐴 ∈ ℤ) ∧
𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃 ∥ 𝐴)) | 
| 17 | 15, 16 | sylan 580 | . . . . . . . . . 10
⊢ (((𝑃 ∥ 𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃 ∥ 𝐴)) | 
| 18 | 17 | ex 412 | . . . . . . . . 9
⊢ ((𝑃 ∥ 𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃 ∥ 𝐴))) | 
| 19 |  | bicom 222 | . . . . . . . . . 10
⊢ ((𝑃 ∥ (𝑥↑2) ↔ 𝑃 ∥ 𝐴) ↔ (𝑃 ∥ 𝐴 ↔ 𝑃 ∥ (𝑥↑2))) | 
| 20 | 3 | ad3antlr 731 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) ∧ 𝑥 ∈ ℤ)
→ 𝑃 ∈
ℙ) | 
| 21 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) ∧ 𝑥 ∈ ℤ)
→ 𝑥 ∈
ℤ) | 
| 22 |  | 2nn 12340 | . . . . . . . . . . . . . 14
⊢ 2 ∈
ℕ | 
| 23 | 22 | a1i 11 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) ∧ 𝑥 ∈ ℤ)
→ 2 ∈ ℕ) | 
| 24 |  | prmdvdsexp 16753 | . . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 2 ∈
ℕ) → (𝑃 ∥
(𝑥↑2) ↔ 𝑃 ∥ 𝑥)) | 
| 25 | 20, 21, 23, 24 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) ∧ 𝑥 ∈ ℤ)
→ (𝑃 ∥ (𝑥↑2) ↔ 𝑃 ∥ 𝑥)) | 
| 26 | 25 | biimparc 479 | . . . . . . . . . . 11
⊢ ((𝑃 ∥ 𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → 𝑃 ∥ (𝑥↑2)) | 
| 27 |  | bianir 1058 | . . . . . . . . . . . . . 14
⊢ ((𝑃 ∥ (𝑥↑2) ∧ (𝑃 ∥ 𝐴 ↔ 𝑃 ∥ (𝑥↑2))) → 𝑃 ∥ 𝐴) | 
| 28 | 5 | ad2antlr 727 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) → 𝑃 ∈
ℕ) | 
| 29 |  | dvdsmod0 16297 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 ∈ ℕ ∧ 𝑃 ∥ 𝐴) → (𝐴 mod 𝑃) = 0) | 
| 30 | 29 | ex 412 | . . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ ℕ → (𝑃 ∥ 𝐴 → (𝐴 mod 𝑃) = 0)) | 
| 31 | 28, 30 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) → (𝑃 ∥ 𝐴 → (𝐴 mod 𝑃) = 0)) | 
| 32 |  | lgsprme0 27384 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0)) | 
| 33 | 3, 32 | sylan2 593 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ ((𝐴
/L 𝑃) = 0
↔ (𝐴 mod 𝑃) = 0)) | 
| 34 |  | eqeq1 2740 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 /L 𝑃) = 0 → ((𝐴 /L 𝑃) = 1 ↔ 0 = 1)) | 
| 35 |  | 0ne1 12338 | . . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ≠
1 | 
| 36 |  | eqneqall 2950 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (0 = 1
→ (0 ≠ 1 → ¬ 𝑃 ∥ 𝑥)) | 
| 37 | 35, 36 | mpi 20 | . . . . . . . . . . . . . . . . . . . 20
⊢ (0 = 1
→ ¬ 𝑃 ∥
𝑥) | 
| 38 | 34, 37 | biimtrdi 253 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 /L 𝑃) = 0 → ((𝐴 /L 𝑃) = 1 → ¬ 𝑃 ∥ 𝑥)) | 
| 39 | 33, 38 | biimtrrdi 254 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ ((𝐴 mod 𝑃) = 0 → ((𝐴 /L 𝑃) = 1 → ¬ 𝑃 ∥ 𝑥))) | 
| 40 | 39 | com23 86 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ ((𝐴
/L 𝑃) = 1
→ ((𝐴 mod 𝑃) = 0 → ¬ 𝑃 ∥ 𝑥))) | 
| 41 | 40 | imp 406 | . . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) → ((𝐴 mod 𝑃) = 0 → ¬ 𝑃 ∥ 𝑥)) | 
| 42 | 31, 41 | syld 47 | . . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) → (𝑃 ∥ 𝐴 → ¬ 𝑃 ∥ 𝑥)) | 
| 43 | 42 | ad2antrl 728 | . . . . . . . . . . . . . 14
⊢ ((𝑃 ∥ 𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃 ∥ 𝐴 → ¬ 𝑃 ∥ 𝑥)) | 
| 44 | 27, 43 | syl5com 31 | . . . . . . . . . . . . 13
⊢ ((𝑃 ∥ (𝑥↑2) ∧ (𝑃 ∥ 𝐴 ↔ 𝑃 ∥ (𝑥↑2))) → ((𝑃 ∥ 𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ¬ 𝑃 ∥ 𝑥)) | 
| 45 | 44 | ex 412 | . . . . . . . . . . . 12
⊢ (𝑃 ∥ (𝑥↑2) → ((𝑃 ∥ 𝐴 ↔ 𝑃 ∥ (𝑥↑2)) → ((𝑃 ∥ 𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ¬ 𝑃 ∥ 𝑥))) | 
| 46 | 45 | com23 86 | . . . . . . . . . . 11
⊢ (𝑃 ∥ (𝑥↑2) → ((𝑃 ∥ 𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ((𝑃 ∥ 𝐴 ↔ 𝑃 ∥ (𝑥↑2)) → ¬ 𝑃 ∥ 𝑥))) | 
| 47 | 26, 46 | mpcom 38 | . . . . . . . . . 10
⊢ ((𝑃 ∥ 𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ((𝑃 ∥ 𝐴 ↔ 𝑃 ∥ (𝑥↑2)) → ¬ 𝑃 ∥ 𝑥)) | 
| 48 | 19, 47 | biimtrid 242 | . . . . . . . . 9
⊢ ((𝑃 ∥ 𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ((𝑃 ∥ (𝑥↑2) ↔ 𝑃 ∥ 𝐴) → ¬ 𝑃 ∥ 𝑥)) | 
| 49 | 18, 48 | syld 47 | . . . . . . . 8
⊢ ((𝑃 ∥ 𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃 ∥ 𝑥)) | 
| 50 | 49 | ex 412 | . . . . . . 7
⊢ (𝑃 ∥ 𝑥 → ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃 ∥ 𝑥))) | 
| 51 |  | 2a1 28 | . . . . . . 7
⊢ (¬
𝑃 ∥ 𝑥 → ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃 ∥ 𝑥))) | 
| 52 | 50, 51 | pm2.61i 182 | . . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) ∧ 𝑥 ∈ ℤ)
→ (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃 ∥ 𝑥)) | 
| 53 | 11, 52 | sylbid 240 | . . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) ∧ 𝑥 ∈ ℤ)
→ (((𝑥↑2) mod
𝑃) = (𝐴 mod 𝑃) → ¬ 𝑃 ∥ 𝑥)) | 
| 54 | 53 | ancld 550 | . . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) ∧ 𝑥 ∈ ℤ)
→ (((𝑥↑2) mod
𝑃) = (𝐴 mod 𝑃) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃 ∥ 𝑥))) | 
| 55 | 54 | reximdva 3167 | . . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) → (∃𝑥 ∈
ℤ ((𝑥↑2) mod
𝑃) = (𝐴 mod 𝑃) → ∃𝑥 ∈ ℤ (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃 ∥ 𝑥))) | 
| 56 | 2, 55 | mpd 15 | . 2
⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
∧ (𝐴
/L 𝑃) =
1) → ∃𝑥 ∈
ℤ (((𝑥↑2) mod
𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃 ∥ 𝑥)) | 
| 57 | 56 | ex 412 | 1
⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}))
→ ((𝐴
/L 𝑃) = 1
→ ∃𝑥 ∈
ℤ (((𝑥↑2) mod
𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃 ∥ 𝑥))) |