MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrmodndvds Structured version   Visualization version   GIF version

Theorem lgsqrmodndvds 25931
Description: If the Legendre symbol of an integer 𝐴 for an odd prime is 1, then the number is a quadratic residue mod 𝑃 with a solution 𝑥 of the congruence (𝑥↑2)≡𝐴 (mod 𝑃) which is not divisible by the prime. (Contributed by AV, 20-Aug-2021.) (Proof shortened by AV, 18-Mar-2022.)
Assertion
Ref Expression
lgsqrmodndvds ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑃

Proof of Theorem lgsqrmodndvds
StepHypRef Expression
1 lgsqrmod 25930 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃)))
21imp 409 . . 3 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → ∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃))
3 eldifi 4105 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
4 prmnn 16020 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
53, 4syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
65ad3antlr 729 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℕ)
7 zsqcl 13497 . . . . . . . 8 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
87adantl 484 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈ ℤ)
9 simplll 773 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℤ)
10 moddvds 15620 . . . . . . 7 ((𝑃 ∈ ℕ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
116, 8, 9, 10syl3anc 1367 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
125nnzd 12089 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
1312ad3antlr 729 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℤ)
1413, 8, 93jca 1124 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ))
1514adantl 484 . . . . . . . . . . 11 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ))
16 dvdssub2 15653 . . . . . . . . . . 11 (((𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴))
1715, 16sylan 582 . . . . . . . . . 10 (((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴))
1817ex 415 . . . . . . . . 9 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴)))
19 bicom 224 . . . . . . . . . 10 ((𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴) ↔ (𝑃𝐴𝑃 ∥ (𝑥↑2)))
203ad3antlr 729 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℙ)
21 simpr 487 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
22 2nn 11713 . . . . . . . . . . . . . 14 2 ∈ ℕ
2322a1i 11 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 2 ∈ ℕ)
24 prmdvdsexp 16061 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝑥))
2520, 21, 23, 24syl3anc 1367 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝑥))
2625biimparc 482 . . . . . . . . . . 11 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → 𝑃 ∥ (𝑥↑2))
27 bianir 1053 . . . . . . . . . . . . . 14 ((𝑃 ∥ (𝑥↑2) ∧ (𝑃𝐴𝑃 ∥ (𝑥↑2))) → 𝑃𝐴)
285ad2antlr 725 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → 𝑃 ∈ ℕ)
29 dvdsmod0 15615 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℕ ∧ 𝑃𝐴) → (𝐴 mod 𝑃) = 0)
3029ex 415 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℕ → (𝑃𝐴 → (𝐴 mod 𝑃) = 0))
3128, 30syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → (𝑃𝐴 → (𝐴 mod 𝑃) = 0))
32 lgsprme0 25917 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0))
333, 32sylan2 594 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0))
34 eqeq1 2827 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 /L 𝑃) = 0 → ((𝐴 /L 𝑃) = 1 ↔ 0 = 1))
35 0ne1 11711 . . . . . . . . . . . . . . . . . . . . 21 0 ≠ 1
36 eqneqall 3029 . . . . . . . . . . . . . . . . . . . . 21 (0 = 1 → (0 ≠ 1 → ¬ 𝑃𝑥))
3735, 36mpi 20 . . . . . . . . . . . . . . . . . . . 20 (0 = 1 → ¬ 𝑃𝑥)
3834, 37syl6bi 255 . . . . . . . . . . . . . . . . . . 19 ((𝐴 /L 𝑃) = 0 → ((𝐴 /L 𝑃) = 1 → ¬ 𝑃𝑥))
3933, 38syl6bir 256 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 mod 𝑃) = 0 → ((𝐴 /L 𝑃) = 1 → ¬ 𝑃𝑥)))
4039com23 86 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ((𝐴 mod 𝑃) = 0 → ¬ 𝑃𝑥)))
4140imp 409 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → ((𝐴 mod 𝑃) = 0 → ¬ 𝑃𝑥))
4231, 41syld 47 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → (𝑃𝐴 → ¬ 𝑃𝑥))
4342ad2antrl 726 . . . . . . . . . . . . . 14 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃𝐴 → ¬ 𝑃𝑥))
4427, 43syl5com 31 . . . . . . . . . . . . 13 ((𝑃 ∥ (𝑥↑2) ∧ (𝑃𝐴𝑃 ∥ (𝑥↑2))) → ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ¬ 𝑃𝑥))
4544ex 415 . . . . . . . . . . . 12 (𝑃 ∥ (𝑥↑2) → ((𝑃𝐴𝑃 ∥ (𝑥↑2)) → ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ¬ 𝑃𝑥)))
4645com23 86 . . . . . . . . . . 11 (𝑃 ∥ (𝑥↑2) → ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ((𝑃𝐴𝑃 ∥ (𝑥↑2)) → ¬ 𝑃𝑥)))
4726, 46mpcom 38 . . . . . . . . . 10 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ((𝑃𝐴𝑃 ∥ (𝑥↑2)) → ¬ 𝑃𝑥))
4819, 47syl5bi 244 . . . . . . . . 9 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ((𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴) → ¬ 𝑃𝑥))
4918, 48syld 47 . . . . . . . 8 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃𝑥))
5049ex 415 . . . . . . 7 (𝑃𝑥 → ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃𝑥)))
51 2a1 28 . . . . . . 7 𝑃𝑥 → ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃𝑥)))
5250, 51pm2.61i 184 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃𝑥))
5311, 52sylbid 242 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) → ¬ 𝑃𝑥))
5453ancld 553 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥)))
5554reximdva 3276 . . 3 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → (∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) → ∃𝑥 ∈ ℤ (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥)))
562, 55mpd 15 . 2 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → ∃𝑥 ∈ ℤ (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥))
5756ex 415 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wrex 3141  cdif 3935  {csn 4569   class class class wbr 5068  (class class class)co 7158  0cc0 10539  1c1 10540  cmin 10872  cn 11640  2c2 11695  cz 11984   mod cmo 13240  cexp 13432  cdvds 15609  cprime 16017   /L clgs 25872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-ec 8293  df-qs 8297  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-dvds 15610  df-gcd 15846  df-prm 16018  df-phi 16105  df-pc 16176  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-0g 16717  df-gsum 16718  df-prds 16723  df-pws 16725  df-imas 16783  df-qus 16784  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-nsg 18279  df-eqg 18280  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-srg 19258  df-ring 19301  df-cring 19302  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-rnghom 19469  df-drng 19506  df-field 19507  df-subrg 19535  df-lmod 19638  df-lss 19706  df-lsp 19746  df-sra 19946  df-rgmod 19947  df-lidl 19948  df-rsp 19949  df-2idl 20007  df-nzr 20033  df-rlreg 20058  df-domn 20059  df-idom 20060  df-assa 20087  df-asp 20088  df-ascl 20089  df-psr 20138  df-mvr 20139  df-mpl 20140  df-opsr 20142  df-evls 20288  df-evl 20289  df-psr1 20350  df-vr1 20351  df-ply1 20352  df-coe1 20353  df-evl1 20481  df-cnfld 20548  df-zring 20620  df-zrh 20653  df-zn 20656  df-mdeg 24651  df-deg1 24652  df-mon1 24726  df-uc1p 24727  df-q1p 24728  df-r1p 24729  df-lgs 25873
This theorem is referenced by:  sfprmdvdsmersenne  43775
  Copyright terms: Public domain W3C validator