MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrmodndvds Structured version   Visualization version   GIF version

Theorem lgsqrmodndvds 27378
Description: If the Legendre symbol of an integer 𝐴 for an odd prime is 1, then the number is a quadratic residue mod 𝑃 with a solution 𝑥 of the congruence (𝑥↑2)≡𝐴 (mod 𝑃) which is not divisible by the prime. (Contributed by AV, 20-Aug-2021.) (Proof shortened by AV, 18-Mar-2022.)
Assertion
Ref Expression
lgsqrmodndvds ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑃

Proof of Theorem lgsqrmodndvds
StepHypRef Expression
1 lgsqrmod 27377 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃)))
21imp 405 . . 3 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → ∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃))
3 eldifi 4125 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
4 prmnn 16669 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
53, 4syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
65ad3antlr 729 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℕ)
7 zsqcl 14141 . . . . . . . 8 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
87adantl 480 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈ ℤ)
9 simplll 773 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℤ)
10 moddvds 16261 . . . . . . 7 ((𝑃 ∈ ℕ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
116, 8, 9, 10syl3anc 1368 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
125nnzd 12630 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
1312ad3antlr 729 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℤ)
1413, 8, 93jca 1125 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ))
1514adantl 480 . . . . . . . . . . 11 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ))
16 dvdssub2 16297 . . . . . . . . . . 11 (((𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴))
1715, 16sylan 578 . . . . . . . . . 10 (((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴))
1817ex 411 . . . . . . . . 9 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴)))
19 bicom 221 . . . . . . . . . 10 ((𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴) ↔ (𝑃𝐴𝑃 ∥ (𝑥↑2)))
203ad3antlr 729 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℙ)
21 simpr 483 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
22 2nn 12330 . . . . . . . . . . . . . 14 2 ∈ ℕ
2322a1i 11 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 2 ∈ ℕ)
24 prmdvdsexp 16710 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝑥))
2520, 21, 23, 24syl3anc 1368 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝑥))
2625biimparc 478 . . . . . . . . . . 11 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → 𝑃 ∥ (𝑥↑2))
27 bianir 1056 . . . . . . . . . . . . . 14 ((𝑃 ∥ (𝑥↑2) ∧ (𝑃𝐴𝑃 ∥ (𝑥↑2))) → 𝑃𝐴)
285ad2antlr 725 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → 𝑃 ∈ ℕ)
29 dvdsmod0 16256 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℕ ∧ 𝑃𝐴) → (𝐴 mod 𝑃) = 0)
3029ex 411 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℕ → (𝑃𝐴 → (𝐴 mod 𝑃) = 0))
3128, 30syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → (𝑃𝐴 → (𝐴 mod 𝑃) = 0))
32 lgsprme0 27364 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0))
333, 32sylan2 591 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0))
34 eqeq1 2730 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 /L 𝑃) = 0 → ((𝐴 /L 𝑃) = 1 ↔ 0 = 1))
35 0ne1 12328 . . . . . . . . . . . . . . . . . . . . 21 0 ≠ 1
36 eqneqall 2941 . . . . . . . . . . . . . . . . . . . . 21 (0 = 1 → (0 ≠ 1 → ¬ 𝑃𝑥))
3735, 36mpi 20 . . . . . . . . . . . . . . . . . . . 20 (0 = 1 → ¬ 𝑃𝑥)
3834, 37biimtrdi 252 . . . . . . . . . . . . . . . . . . 19 ((𝐴 /L 𝑃) = 0 → ((𝐴 /L 𝑃) = 1 → ¬ 𝑃𝑥))
3933, 38biimtrrdi 253 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 mod 𝑃) = 0 → ((𝐴 /L 𝑃) = 1 → ¬ 𝑃𝑥)))
4039com23 86 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ((𝐴 mod 𝑃) = 0 → ¬ 𝑃𝑥)))
4140imp 405 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → ((𝐴 mod 𝑃) = 0 → ¬ 𝑃𝑥))
4231, 41syld 47 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → (𝑃𝐴 → ¬ 𝑃𝑥))
4342ad2antrl 726 . . . . . . . . . . . . . 14 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃𝐴 → ¬ 𝑃𝑥))
4427, 43syl5com 31 . . . . . . . . . . . . 13 ((𝑃 ∥ (𝑥↑2) ∧ (𝑃𝐴𝑃 ∥ (𝑥↑2))) → ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ¬ 𝑃𝑥))
4544ex 411 . . . . . . . . . . . 12 (𝑃 ∥ (𝑥↑2) → ((𝑃𝐴𝑃 ∥ (𝑥↑2)) → ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ¬ 𝑃𝑥)))
4645com23 86 . . . . . . . . . . 11 (𝑃 ∥ (𝑥↑2) → ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ((𝑃𝐴𝑃 ∥ (𝑥↑2)) → ¬ 𝑃𝑥)))
4726, 46mpcom 38 . . . . . . . . . 10 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ((𝑃𝐴𝑃 ∥ (𝑥↑2)) → ¬ 𝑃𝑥))
4819, 47biimtrid 241 . . . . . . . . 9 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ((𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴) → ¬ 𝑃𝑥))
4918, 48syld 47 . . . . . . . 8 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃𝑥))
5049ex 411 . . . . . . 7 (𝑃𝑥 → ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃𝑥)))
51 2a1 28 . . . . . . 7 𝑃𝑥 → ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃𝑥)))
5250, 51pm2.61i 182 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃𝑥))
5311, 52sylbid 239 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) → ¬ 𝑃𝑥))
5453ancld 549 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥)))
5554reximdva 3158 . . 3 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → (∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) → ∃𝑥 ∈ ℤ (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥)))
562, 55mpd 15 . 2 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → ∃𝑥 ∈ ℤ (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥))
5756ex 411 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wrex 3060  cdif 3945  {csn 4625   class class class wbr 5145  (class class class)co 7415  0cc0 11148  1c1 11149  cmin 11484  cn 12257  2c2 12312  cz 12603   mod cmo 13882  cexp 14074  cdvds 16250  cprime 16666   /L clgs 27319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7737  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225  ax-pre-sup 11226  ax-addf 11227  ax-mulf 11228
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3466  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3968  df-nul 4325  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4908  df-int 4949  df-iun 4997  df-iin 4998  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6370  df-on 6371  df-lim 6372  df-suc 6373  df-iota 6497  df-fun 6547  df-fn 6548  df-f 6549  df-f1 6550  df-fo 6551  df-f1o 6552  df-fv 6553  df-isom 6554  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7681  df-ofr 7682  df-om 7868  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8725  df-ec 8727  df-qs 8731  df-map 8848  df-pm 8849  df-ixp 8918  df-en 8966  df-dom 8967  df-sdom 8968  df-fin 8969  df-fsupp 9398  df-sup 9477  df-inf 9478  df-oi 9545  df-dju 9936  df-card 9974  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-div 11912  df-nn 12258  df-2 12320  df-3 12321  df-4 12322  df-5 12323  df-6 12324  df-7 12325  df-8 12326  df-9 12327  df-n0 12518  df-xnn0 12590  df-z 12604  df-dec 12723  df-uz 12868  df-q 12978  df-rp 13022  df-fz 13532  df-fzo 13675  df-fl 13805  df-mod 13883  df-seq 14015  df-exp 14075  df-hash 14342  df-cj 15098  df-re 15099  df-im 15100  df-sqrt 15234  df-abs 15235  df-dvds 16251  df-gcd 16489  df-prm 16667  df-phi 16762  df-pc 16833  df-struct 17143  df-sets 17160  df-slot 17178  df-ndx 17190  df-base 17208  df-ress 17237  df-plusg 17273  df-mulr 17274  df-starv 17275  df-sca 17276  df-vsca 17277  df-ip 17278  df-tset 17279  df-ple 17280  df-ds 17282  df-unif 17283  df-hom 17284  df-cco 17285  df-0g 17450  df-gsum 17451  df-prds 17456  df-pws 17458  df-imas 17517  df-qus 17518  df-mre 17593  df-mrc 17594  df-acs 17596  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-mhm 18767  df-submnd 18768  df-grp 18925  df-minusg 18926  df-sbg 18927  df-mulg 19057  df-subg 19112  df-nsg 19113  df-eqg 19114  df-ghm 19202  df-cntz 19306  df-cmn 19775  df-abl 19776  df-mgp 20113  df-rng 20131  df-ur 20160  df-srg 20165  df-ring 20213  df-cring 20214  df-oppr 20311  df-dvdsr 20334  df-unit 20335  df-invr 20365  df-dvr 20378  df-rhm 20449  df-nzr 20490  df-subrng 20523  df-subrg 20548  df-rlreg 20667  df-domn 20668  df-idom 20669  df-drng 20704  df-field 20705  df-lmod 20833  df-lss 20904  df-lsp 20944  df-sra 21146  df-rgmod 21147  df-lidl 21192  df-rsp 21193  df-2idl 21234  df-cnfld 21339  df-zring 21432  df-zrh 21488  df-zn 21491  df-assa 21846  df-asp 21847  df-ascl 21848  df-psr 21901  df-mvr 21902  df-mpl 21903  df-opsr 21905  df-evls 22082  df-evl 22083  df-psr1 22164  df-vr1 22165  df-ply1 22166  df-coe1 22167  df-evl1 22303  df-mdeg 26075  df-deg1 26076  df-mon1 26154  df-uc1p 26155  df-q1p 26156  df-r1p 26157  df-lgs 27320
This theorem is referenced by:  sfprmdvdsmersenne  47210
  Copyright terms: Public domain W3C validator