MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrmodndvds Structured version   Visualization version   GIF version

Theorem lgsqrmodndvds 25292
Description: If the Legendre symbol of an integer 𝐴 for an odd prime is 1, then the number is a quadratic residue mod 𝑃 with a solution 𝑥 of the congruence (𝑥↑2)≡𝐴 (mod 𝑃) which is not divisible by the prime. (Contributed by AV, 20-Aug-2021.) (Proof shortened by AV, 18-Mar-2022.)
Assertion
Ref Expression
lgsqrmodndvds ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑃

Proof of Theorem lgsqrmodndvds
StepHypRef Expression
1 lgsqrmod 25291 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃)))
21imp 393 . . 3 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → ∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃))
3 eldifi 3883 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
4 prmnn 15588 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
53, 4syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
65ad3antlr 710 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℕ)
7 zsqcl 13134 . . . . . . . 8 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
87adantl 467 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈ ℤ)
9 simplll 758 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℤ)
10 moddvds 15193 . . . . . . 7 ((𝑃 ∈ ℕ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
116, 8, 9, 10syl3anc 1476 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
125nnzd 11681 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
1312ad3antlr 710 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℤ)
1413, 8, 93jca 1122 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ))
1514adantl 467 . . . . . . . . . . 11 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ))
16 dvdssub2 15225 . . . . . . . . . . 11 (((𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴))
1715, 16sylan 569 . . . . . . . . . 10 (((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴))
1817ex 397 . . . . . . . . 9 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴)))
19 bicom 212 . . . . . . . . . 10 ((𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴) ↔ (𝑃𝐴𝑃 ∥ (𝑥↑2)))
203ad3antlr 710 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℙ)
21 simpr 471 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
22 2nn 11385 . . . . . . . . . . . . . 14 2 ∈ ℕ
2322a1i 11 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 2 ∈ ℕ)
24 prmdvdsexp 15627 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝑥))
2520, 21, 23, 24syl3anc 1476 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝑥))
2625biimparc 465 . . . . . . . . . . 11 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → 𝑃 ∥ (𝑥↑2))
27 bianir 1045 . . . . . . . . . . . . . 14 ((𝑃 ∥ (𝑥↑2) ∧ (𝑃𝐴𝑃 ∥ (𝑥↑2))) → 𝑃𝐴)
285ad2antlr 706 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → 𝑃 ∈ ℕ)
29 dvdsmod0 15188 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℕ ∧ 𝑃𝐴) → (𝐴 mod 𝑃) = 0)
3029ex 397 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℕ → (𝑃𝐴 → (𝐴 mod 𝑃) = 0))
3128, 30syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → (𝑃𝐴 → (𝐴 mod 𝑃) = 0))
32 lgsprme0 25278 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0))
333, 32sylan2 580 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0))
34 eqeq1 2775 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 /L 𝑃) = 0 → ((𝐴 /L 𝑃) = 1 ↔ 0 = 1))
35 0ne1 11288 . . . . . . . . . . . . . . . . . . . . 21 0 ≠ 1
36 eqneqall 2954 . . . . . . . . . . . . . . . . . . . . 21 (0 = 1 → (0 ≠ 1 → ¬ 𝑃𝑥))
3735, 36mpi 20 . . . . . . . . . . . . . . . . . . . 20 (0 = 1 → ¬ 𝑃𝑥)
3834, 37syl6bi 243 . . . . . . . . . . . . . . . . . . 19 ((𝐴 /L 𝑃) = 0 → ((𝐴 /L 𝑃) = 1 → ¬ 𝑃𝑥))
3933, 38syl6bir 244 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 mod 𝑃) = 0 → ((𝐴 /L 𝑃) = 1 → ¬ 𝑃𝑥)))
4039com23 86 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ((𝐴 mod 𝑃) = 0 → ¬ 𝑃𝑥)))
4140imp 393 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → ((𝐴 mod 𝑃) = 0 → ¬ 𝑃𝑥))
4231, 41syld 47 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → (𝑃𝐴 → ¬ 𝑃𝑥))
4342ad2antrl 707 . . . . . . . . . . . . . 14 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃𝐴 → ¬ 𝑃𝑥))
4427, 43syl5com 31 . . . . . . . . . . . . 13 ((𝑃 ∥ (𝑥↑2) ∧ (𝑃𝐴𝑃 ∥ (𝑥↑2))) → ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ¬ 𝑃𝑥))
4544ex 397 . . . . . . . . . . . 12 (𝑃 ∥ (𝑥↑2) → ((𝑃𝐴𝑃 ∥ (𝑥↑2)) → ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ¬ 𝑃𝑥)))
4645com23 86 . . . . . . . . . . 11 (𝑃 ∥ (𝑥↑2) → ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ((𝑃𝐴𝑃 ∥ (𝑥↑2)) → ¬ 𝑃𝑥)))
4726, 46mpcom 38 . . . . . . . . . 10 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ((𝑃𝐴𝑃 ∥ (𝑥↑2)) → ¬ 𝑃𝑥))
4819, 47syl5bi 232 . . . . . . . . 9 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ((𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴) → ¬ 𝑃𝑥))
4918, 48syld 47 . . . . . . . 8 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃𝑥))
5049ex 397 . . . . . . 7 (𝑃𝑥 → ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃𝑥)))
51 2a1 28 . . . . . . 7 𝑃𝑥 → ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃𝑥)))
5250, 51pm2.61i 176 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃𝑥))
5311, 52sylbid 230 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) → ¬ 𝑃𝑥))
5453ancld 540 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥)))
5554reximdva 3165 . . 3 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → (∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) → ∃𝑥 ∈ ℤ (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥)))
562, 55mpd 15 . 2 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → ∃𝑥 ∈ ℤ (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥))
5756ex 397 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062  cdif 3720  {csn 4316   class class class wbr 4786  (class class class)co 6791  0cc0 10136  1c1 10137  cmin 10466  cn 11220  2c2 11270  cz 11577   mod cmo 12869  cexp 13060  cdvds 15182  cprime 15585   /L clgs 25233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214  ax-addf 10215  ax-mulf 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-of 7042  df-ofr 7043  df-om 7211  df-1st 7313  df-2nd 7314  df-supp 7445  df-tpos 7502  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-er 7894  df-ec 7896  df-qs 7900  df-map 8009  df-pm 8010  df-ixp 8061  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-fsupp 8430  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-cda 9190  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-xnn0 11564  df-z 11578  df-dec 11694  df-uz 11887  df-q 11990  df-rp 12029  df-fz 12527  df-fzo 12667  df-fl 12794  df-mod 12870  df-seq 13002  df-exp 13061  df-hash 13315  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-dvds 15183  df-gcd 15418  df-prm 15586  df-phi 15671  df-pc 15742  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-mulr 16156  df-starv 16157  df-sca 16158  df-vsca 16159  df-ip 16160  df-tset 16161  df-ple 16162  df-ds 16165  df-unif 16166  df-hom 16167  df-cco 16168  df-0g 16303  df-gsum 16304  df-prds 16309  df-pws 16311  df-imas 16369  df-qus 16370  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-nsg 17793  df-eqg 17794  df-ghm 17859  df-cntz 17950  df-cmn 18395  df-abl 18396  df-mgp 18691  df-ur 18703  df-srg 18707  df-ring 18750  df-cring 18751  df-oppr 18824  df-dvdsr 18842  df-unit 18843  df-invr 18873  df-dvr 18884  df-rnghom 18918  df-drng 18952  df-field 18953  df-subrg 18981  df-lmod 19068  df-lss 19136  df-lsp 19178  df-sra 19380  df-rgmod 19381  df-lidl 19382  df-rsp 19383  df-2idl 19440  df-nzr 19466  df-rlreg 19491  df-domn 19492  df-idom 19493  df-assa 19520  df-asp 19521  df-ascl 19522  df-psr 19564  df-mvr 19565  df-mpl 19566  df-opsr 19568  df-evls 19714  df-evl 19715  df-psr1 19758  df-vr1 19759  df-ply1 19760  df-coe1 19761  df-evl1 19889  df-cnfld 19955  df-zring 20027  df-zrh 20060  df-zn 20063  df-mdeg 24028  df-deg1 24029  df-mon1 24103  df-uc1p 24104  df-q1p 24105  df-r1p 24106  df-lgs 25234
This theorem is referenced by:  sfprmdvdsmersenne  42041
  Copyright terms: Public domain W3C validator