MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqrmodndvds Structured version   Visualization version   GIF version

Theorem lgsqrmodndvds 26501
Description: If the Legendre symbol of an integer 𝐴 for an odd prime is 1, then the number is a quadratic residue mod 𝑃 with a solution 𝑥 of the congruence (𝑥↑2)≡𝐴 (mod 𝑃) which is not divisible by the prime. (Contributed by AV, 20-Aug-2021.) (Proof shortened by AV, 18-Mar-2022.)
Assertion
Ref Expression
lgsqrmodndvds ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑃

Proof of Theorem lgsqrmodndvds
StepHypRef Expression
1 lgsqrmod 26500 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃)))
21imp 407 . . 3 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → ∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃))
3 eldifi 4061 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
4 prmnn 16379 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
53, 4syl 17 . . . . . . . 8 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
65ad3antlr 728 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℕ)
7 zsqcl 13848 . . . . . . . 8 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ)
87adantl 482 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈ ℤ)
9 simplll 772 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℤ)
10 moddvds 15974 . . . . . . 7 ((𝑃 ∈ ℕ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
116, 8, 9, 10syl3anc 1370 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴)))
125nnzd 12425 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
1312ad3antlr 728 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℤ)
1413, 8, 93jca 1127 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ))
1514adantl 482 . . . . . . . . . . 11 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ))
16 dvdssub2 16010 . . . . . . . . . . 11 (((𝑃 ∈ ℤ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴))
1715, 16sylan 580 . . . . . . . . . 10 (((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) ∧ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴))
1817ex 413 . . . . . . . . 9 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴)))
19 bicom 221 . . . . . . . . . 10 ((𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴) ↔ (𝑃𝐴𝑃 ∥ (𝑥↑2)))
203ad3antlr 728 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℙ)
21 simpr 485 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
22 2nn 12046 . . . . . . . . . . . . . 14 2 ∈ ℕ
2322a1i 11 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → 2 ∈ ℕ)
24 prmdvdsexp 16420 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝑥))
2520, 21, 23, 24syl3anc 1370 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ (𝑥↑2) ↔ 𝑃𝑥))
2625biimparc 480 . . . . . . . . . . 11 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → 𝑃 ∥ (𝑥↑2))
27 bianir 1056 . . . . . . . . . . . . . 14 ((𝑃 ∥ (𝑥↑2) ∧ (𝑃𝐴𝑃 ∥ (𝑥↑2))) → 𝑃𝐴)
285ad2antlr 724 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → 𝑃 ∈ ℕ)
29 dvdsmod0 15969 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℕ ∧ 𝑃𝐴) → (𝐴 mod 𝑃) = 0)
3029ex 413 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℕ → (𝑃𝐴 → (𝐴 mod 𝑃) = 0))
3128, 30syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → (𝑃𝐴 → (𝐴 mod 𝑃) = 0))
32 lgsprme0 26487 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0))
333, 32sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 0 ↔ (𝐴 mod 𝑃) = 0))
34 eqeq1 2742 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 /L 𝑃) = 0 → ((𝐴 /L 𝑃) = 1 ↔ 0 = 1))
35 0ne1 12044 . . . . . . . . . . . . . . . . . . . . 21 0 ≠ 1
36 eqneqall 2954 . . . . . . . . . . . . . . . . . . . . 21 (0 = 1 → (0 ≠ 1 → ¬ 𝑃𝑥))
3735, 36mpi 20 . . . . . . . . . . . . . . . . . . . 20 (0 = 1 → ¬ 𝑃𝑥)
3834, 37syl6bi 252 . . . . . . . . . . . . . . . . . . 19 ((𝐴 /L 𝑃) = 0 → ((𝐴 /L 𝑃) = 1 → ¬ 𝑃𝑥))
3933, 38syl6bir 253 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 mod 𝑃) = 0 → ((𝐴 /L 𝑃) = 1 → ¬ 𝑃𝑥)))
4039com23 86 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ((𝐴 mod 𝑃) = 0 → ¬ 𝑃𝑥)))
4140imp 407 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → ((𝐴 mod 𝑃) = 0 → ¬ 𝑃𝑥))
4231, 41syld 47 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → (𝑃𝐴 → ¬ 𝑃𝑥))
4342ad2antrl 725 . . . . . . . . . . . . . 14 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃𝐴 → ¬ 𝑃𝑥))
4427, 43syl5com 31 . . . . . . . . . . . . 13 ((𝑃 ∥ (𝑥↑2) ∧ (𝑃𝐴𝑃 ∥ (𝑥↑2))) → ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ¬ 𝑃𝑥))
4544ex 413 . . . . . . . . . . . 12 (𝑃 ∥ (𝑥↑2) → ((𝑃𝐴𝑃 ∥ (𝑥↑2)) → ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ¬ 𝑃𝑥)))
4645com23 86 . . . . . . . . . . 11 (𝑃 ∥ (𝑥↑2) → ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ((𝑃𝐴𝑃 ∥ (𝑥↑2)) → ¬ 𝑃𝑥)))
4726, 46mpcom 38 . . . . . . . . . 10 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ((𝑃𝐴𝑃 ∥ (𝑥↑2)) → ¬ 𝑃𝑥))
4819, 47syl5bi 241 . . . . . . . . 9 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → ((𝑃 ∥ (𝑥↑2) ↔ 𝑃𝐴) → ¬ 𝑃𝑥))
4918, 48syld 47 . . . . . . . 8 ((𝑃𝑥 ∧ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ)) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃𝑥))
5049ex 413 . . . . . . 7 (𝑃𝑥 → ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃𝑥)))
51 2a1 28 . . . . . . 7 𝑃𝑥 → ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃𝑥)))
5250, 51pm2.61i 182 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ¬ 𝑃𝑥))
5311, 52sylbid 239 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) → ¬ 𝑃𝑥))
5453ancld 551 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥)))
5554reximdva 3203 . . 3 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → (∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) → ∃𝑥 ∈ ℤ (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥)))
562, 55mpd 15 . 2 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (𝐴 /L 𝑃) = 1) → ∃𝑥 ∈ ℤ (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥))
5756ex 413 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ∧ ¬ 𝑃𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884  {csn 4561   class class class wbr 5074  (class class class)co 7275  0cc0 10871  1c1 10872  cmin 11205  cn 11973  2c2 12028  cz 12319   mod cmo 13589  cexp 13782  cdvds 15963  cprime 16376   /L clgs 26442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377  df-phi 16467  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-imas 17219  df-qus 17220  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-nsg 18753  df-eqg 18754  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-srg 19742  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-field 19994  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-2idl 20503  df-nzr 20529  df-rlreg 20554  df-domn 20555  df-idom 20556  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-zn 20708  df-assa 21060  df-asp 21061  df-ascl 21062  df-psr 21112  df-mvr 21113  df-mpl 21114  df-opsr 21116  df-evls 21282  df-evl 21283  df-psr1 21351  df-vr1 21352  df-ply1 21353  df-coe1 21354  df-evl1 21482  df-mdeg 25217  df-deg1 25218  df-mon1 25295  df-uc1p 25296  df-q1p 25297  df-r1p 25298  df-lgs 26443
This theorem is referenced by:  sfprmdvdsmersenne  45055
  Copyright terms: Public domain W3C validator