Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj970 Structured version   Visualization version   GIF version

Theorem bnj970 34930
Description: Technical lemma for bnj69 34993. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj970.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj970.10 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj970 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑝𝐷)

Proof of Theorem bnj970
StepHypRef Expression
1 bnj970.3 . . . . 5 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
21bnj1232 34786 . . . 4 (𝜒𝑛𝐷)
323ad2ant1 1133 . . 3 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝑛𝐷)
43adantl 481 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑛𝐷)
5 simpr3 1197 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑝 = suc 𝑛)
6 bnj970.10 . . . . 5 𝐷 = (ω ∖ {∅})
76bnj923 34751 . . . 4 (𝑛𝐷𝑛 ∈ ω)
8 peano2 7846 . . . . 5 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
9 eleq1 2816 . . . . 5 (𝑝 = suc 𝑛 → (𝑝 ∈ ω ↔ suc 𝑛 ∈ ω))
10 bianir 1058 . . . . 5 ((suc 𝑛 ∈ ω ∧ (𝑝 ∈ ω ↔ suc 𝑛 ∈ ω)) → 𝑝 ∈ ω)
118, 9, 10syl2an 596 . . . 4 ((𝑛 ∈ ω ∧ 𝑝 = suc 𝑛) → 𝑝 ∈ ω)
127, 11sylan 580 . . 3 ((𝑛𝐷𝑝 = suc 𝑛) → 𝑝 ∈ ω)
13 df-suc 6326 . . . . . 6 suc 𝑛 = (𝑛 ∪ {𝑛})
1413eqeq2i 2742 . . . . 5 (𝑝 = suc 𝑛𝑝 = (𝑛 ∪ {𝑛}))
15 ssun2 4138 . . . . . . 7 {𝑛} ⊆ (𝑛 ∪ {𝑛})
16 vex 3448 . . . . . . . 8 𝑛 ∈ V
1716snnz 4736 . . . . . . 7 {𝑛} ≠ ∅
18 ssn0 4363 . . . . . . 7 (({𝑛} ⊆ (𝑛 ∪ {𝑛}) ∧ {𝑛} ≠ ∅) → (𝑛 ∪ {𝑛}) ≠ ∅)
1915, 17, 18mp2an 692 . . . . . 6 (𝑛 ∪ {𝑛}) ≠ ∅
20 neeq1 2987 . . . . . 6 (𝑝 = (𝑛 ∪ {𝑛}) → (𝑝 ≠ ∅ ↔ (𝑛 ∪ {𝑛}) ≠ ∅))
2119, 20mpbiri 258 . . . . 5 (𝑝 = (𝑛 ∪ {𝑛}) → 𝑝 ≠ ∅)
2214, 21sylbi 217 . . . 4 (𝑝 = suc 𝑛𝑝 ≠ ∅)
2322adantl 481 . . 3 ((𝑛𝐷𝑝 = suc 𝑛) → 𝑝 ≠ ∅)
246eleq2i 2820 . . . 4 (𝑝𝐷𝑝 ∈ (ω ∖ {∅}))
25 eldifsn 4746 . . . 4 (𝑝 ∈ (ω ∖ {∅}) ↔ (𝑝 ∈ ω ∧ 𝑝 ≠ ∅))
2624, 25bitri 275 . . 3 (𝑝𝐷 ↔ (𝑝 ∈ ω ∧ 𝑝 ≠ ∅))
2712, 23, 26sylanbrc 583 . 2 ((𝑛𝐷𝑝 = suc 𝑛) → 𝑝𝐷)
284, 5, 27syl2anc 584 1 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑝𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3908  cun 3909  wss 3911  c0 4292  {csn 4585  suc csuc 6322   Fn wfn 6494  ωcom 7822  w-bnj17 34669   FrSe w-bnj15 34675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-om 7823  df-bnj17 34670
This theorem is referenced by:  bnj910  34931
  Copyright terms: Public domain W3C validator