Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj970 Structured version   Visualization version   GIF version

Theorem bnj970 34923
Description: Technical lemma for bnj69 34986. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj970.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj970.10 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj970 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑝𝐷)

Proof of Theorem bnj970
StepHypRef Expression
1 bnj970.3 . . . . 5 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
21bnj1232 34779 . . . 4 (𝜒𝑛𝐷)
323ad2ant1 1133 . . 3 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝑛𝐷)
43adantl 481 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑛𝐷)
5 simpr3 1196 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑝 = suc 𝑛)
6 bnj970.10 . . . . 5 𝐷 = (ω ∖ {∅})
76bnj923 34744 . . . 4 (𝑛𝐷𝑛 ∈ ω)
8 peano2 7929 . . . . 5 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
9 eleq1 2832 . . . . 5 (𝑝 = suc 𝑛 → (𝑝 ∈ ω ↔ suc 𝑛 ∈ ω))
10 bianir 1059 . . . . 5 ((suc 𝑛 ∈ ω ∧ (𝑝 ∈ ω ↔ suc 𝑛 ∈ ω)) → 𝑝 ∈ ω)
118, 9, 10syl2an 595 . . . 4 ((𝑛 ∈ ω ∧ 𝑝 = suc 𝑛) → 𝑝 ∈ ω)
127, 11sylan 579 . . 3 ((𝑛𝐷𝑝 = suc 𝑛) → 𝑝 ∈ ω)
13 df-suc 6401 . . . . . 6 suc 𝑛 = (𝑛 ∪ {𝑛})
1413eqeq2i 2753 . . . . 5 (𝑝 = suc 𝑛𝑝 = (𝑛 ∪ {𝑛}))
15 ssun2 4202 . . . . . . 7 {𝑛} ⊆ (𝑛 ∪ {𝑛})
16 vex 3492 . . . . . . . 8 𝑛 ∈ V
1716snnz 4801 . . . . . . 7 {𝑛} ≠ ∅
18 ssn0 4427 . . . . . . 7 (({𝑛} ⊆ (𝑛 ∪ {𝑛}) ∧ {𝑛} ≠ ∅) → (𝑛 ∪ {𝑛}) ≠ ∅)
1915, 17, 18mp2an 691 . . . . . 6 (𝑛 ∪ {𝑛}) ≠ ∅
20 neeq1 3009 . . . . . 6 (𝑝 = (𝑛 ∪ {𝑛}) → (𝑝 ≠ ∅ ↔ (𝑛 ∪ {𝑛}) ≠ ∅))
2119, 20mpbiri 258 . . . . 5 (𝑝 = (𝑛 ∪ {𝑛}) → 𝑝 ≠ ∅)
2214, 21sylbi 217 . . . 4 (𝑝 = suc 𝑛𝑝 ≠ ∅)
2322adantl 481 . . 3 ((𝑛𝐷𝑝 = suc 𝑛) → 𝑝 ≠ ∅)
246eleq2i 2836 . . . 4 (𝑝𝐷𝑝 ∈ (ω ∖ {∅}))
25 eldifsn 4811 . . . 4 (𝑝 ∈ (ω ∖ {∅}) ↔ (𝑝 ∈ ω ∧ 𝑝 ≠ ∅))
2624, 25bitri 275 . . 3 (𝑝𝐷 ↔ (𝑝 ∈ ω ∧ 𝑝 ≠ ∅))
2712, 23, 26sylanbrc 582 . 2 ((𝑛𝐷𝑝 = suc 𝑛) → 𝑝𝐷)
284, 5, 27syl2anc 583 1 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑝𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cdif 3973  cun 3974  wss 3976  c0 4352  {csn 4648  suc csuc 6397   Fn wfn 6568  ωcom 7903  w-bnj17 34662   FrSe w-bnj15 34668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-om 7904  df-bnj17 34663
This theorem is referenced by:  bnj910  34924
  Copyright terms: Public domain W3C validator