| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj970 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 35024. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj970.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| bnj970.10 | ⊢ 𝐷 = (ω ∖ {∅}) |
| Ref | Expression |
|---|---|
| bnj970 | ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝑝 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj970.3 | . . . . 5 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
| 2 | 1 | bnj1232 34817 | . . . 4 ⊢ (𝜒 → 𝑛 ∈ 𝐷) |
| 3 | 2 | 3ad2ant1 1134 | . . 3 ⊢ ((𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → 𝑛 ∈ 𝐷) |
| 4 | 3 | adantl 481 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝑛 ∈ 𝐷) |
| 5 | simpr3 1197 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝑝 = suc 𝑛) | |
| 6 | bnj970.10 | . . . . 5 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 7 | 6 | bnj923 34782 | . . . 4 ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
| 8 | peano2 7912 | . . . . 5 ⊢ (𝑛 ∈ ω → suc 𝑛 ∈ ω) | |
| 9 | eleq1 2829 | . . . . 5 ⊢ (𝑝 = suc 𝑛 → (𝑝 ∈ ω ↔ suc 𝑛 ∈ ω)) | |
| 10 | bianir 1059 | . . . . 5 ⊢ ((suc 𝑛 ∈ ω ∧ (𝑝 ∈ ω ↔ suc 𝑛 ∈ ω)) → 𝑝 ∈ ω) | |
| 11 | 8, 9, 10 | syl2an 596 | . . . 4 ⊢ ((𝑛 ∈ ω ∧ 𝑝 = suc 𝑛) → 𝑝 ∈ ω) |
| 12 | 7, 11 | sylan 580 | . . 3 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛) → 𝑝 ∈ ω) |
| 13 | df-suc 6390 | . . . . . 6 ⊢ suc 𝑛 = (𝑛 ∪ {𝑛}) | |
| 14 | 13 | eqeq2i 2750 | . . . . 5 ⊢ (𝑝 = suc 𝑛 ↔ 𝑝 = (𝑛 ∪ {𝑛})) |
| 15 | ssun2 4179 | . . . . . . 7 ⊢ {𝑛} ⊆ (𝑛 ∪ {𝑛}) | |
| 16 | vex 3484 | . . . . . . . 8 ⊢ 𝑛 ∈ V | |
| 17 | 16 | snnz 4776 | . . . . . . 7 ⊢ {𝑛} ≠ ∅ |
| 18 | ssn0 4404 | . . . . . . 7 ⊢ (({𝑛} ⊆ (𝑛 ∪ {𝑛}) ∧ {𝑛} ≠ ∅) → (𝑛 ∪ {𝑛}) ≠ ∅) | |
| 19 | 15, 17, 18 | mp2an 692 | . . . . . 6 ⊢ (𝑛 ∪ {𝑛}) ≠ ∅ |
| 20 | neeq1 3003 | . . . . . 6 ⊢ (𝑝 = (𝑛 ∪ {𝑛}) → (𝑝 ≠ ∅ ↔ (𝑛 ∪ {𝑛}) ≠ ∅)) | |
| 21 | 19, 20 | mpbiri 258 | . . . . 5 ⊢ (𝑝 = (𝑛 ∪ {𝑛}) → 𝑝 ≠ ∅) |
| 22 | 14, 21 | sylbi 217 | . . . 4 ⊢ (𝑝 = suc 𝑛 → 𝑝 ≠ ∅) |
| 23 | 22 | adantl 481 | . . 3 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛) → 𝑝 ≠ ∅) |
| 24 | 6 | eleq2i 2833 | . . . 4 ⊢ (𝑝 ∈ 𝐷 ↔ 𝑝 ∈ (ω ∖ {∅})) |
| 25 | eldifsn 4786 | . . . 4 ⊢ (𝑝 ∈ (ω ∖ {∅}) ↔ (𝑝 ∈ ω ∧ 𝑝 ≠ ∅)) | |
| 26 | 24, 25 | bitri 275 | . . 3 ⊢ (𝑝 ∈ 𝐷 ↔ (𝑝 ∈ ω ∧ 𝑝 ≠ ∅)) |
| 27 | 12, 23, 26 | sylanbrc 583 | . 2 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛) → 𝑝 ∈ 𝐷) |
| 28 | 4, 5, 27 | syl2anc 584 | 1 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝑝 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∖ cdif 3948 ∪ cun 3949 ⊆ wss 3951 ∅c0 4333 {csn 4626 suc csuc 6386 Fn wfn 6556 ωcom 7887 ∧ w-bnj17 34700 FrSe w-bnj15 34706 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-om 7888 df-bnj17 34701 |
| This theorem is referenced by: bnj910 34962 |
| Copyright terms: Public domain | W3C validator |