Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj970 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 32890. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj970.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj970.10 | ⊢ 𝐷 = (ω ∖ {∅}) |
Ref | Expression |
---|---|
bnj970 | ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝑝 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj970.3 | . . . . 5 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
2 | 1 | bnj1232 32683 | . . . 4 ⊢ (𝜒 → 𝑛 ∈ 𝐷) |
3 | 2 | 3ad2ant1 1131 | . . 3 ⊢ ((𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → 𝑛 ∈ 𝐷) |
4 | 3 | adantl 481 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝑛 ∈ 𝐷) |
5 | simpr3 1194 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝑝 = suc 𝑛) | |
6 | bnj970.10 | . . . . 5 ⊢ 𝐷 = (ω ∖ {∅}) | |
7 | 6 | bnj923 32648 | . . . 4 ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
8 | peano2 7711 | . . . . 5 ⊢ (𝑛 ∈ ω → suc 𝑛 ∈ ω) | |
9 | eleq1 2826 | . . . . 5 ⊢ (𝑝 = suc 𝑛 → (𝑝 ∈ ω ↔ suc 𝑛 ∈ ω)) | |
10 | bianir 1055 | . . . . 5 ⊢ ((suc 𝑛 ∈ ω ∧ (𝑝 ∈ ω ↔ suc 𝑛 ∈ ω)) → 𝑝 ∈ ω) | |
11 | 8, 9, 10 | syl2an 595 | . . . 4 ⊢ ((𝑛 ∈ ω ∧ 𝑝 = suc 𝑛) → 𝑝 ∈ ω) |
12 | 7, 11 | sylan 579 | . . 3 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛) → 𝑝 ∈ ω) |
13 | df-suc 6257 | . . . . . 6 ⊢ suc 𝑛 = (𝑛 ∪ {𝑛}) | |
14 | 13 | eqeq2i 2751 | . . . . 5 ⊢ (𝑝 = suc 𝑛 ↔ 𝑝 = (𝑛 ∪ {𝑛})) |
15 | ssun2 4103 | . . . . . . 7 ⊢ {𝑛} ⊆ (𝑛 ∪ {𝑛}) | |
16 | vex 3426 | . . . . . . . 8 ⊢ 𝑛 ∈ V | |
17 | 16 | snnz 4709 | . . . . . . 7 ⊢ {𝑛} ≠ ∅ |
18 | ssn0 4331 | . . . . . . 7 ⊢ (({𝑛} ⊆ (𝑛 ∪ {𝑛}) ∧ {𝑛} ≠ ∅) → (𝑛 ∪ {𝑛}) ≠ ∅) | |
19 | 15, 17, 18 | mp2an 688 | . . . . . 6 ⊢ (𝑛 ∪ {𝑛}) ≠ ∅ |
20 | neeq1 3005 | . . . . . 6 ⊢ (𝑝 = (𝑛 ∪ {𝑛}) → (𝑝 ≠ ∅ ↔ (𝑛 ∪ {𝑛}) ≠ ∅)) | |
21 | 19, 20 | mpbiri 257 | . . . . 5 ⊢ (𝑝 = (𝑛 ∪ {𝑛}) → 𝑝 ≠ ∅) |
22 | 14, 21 | sylbi 216 | . . . 4 ⊢ (𝑝 = suc 𝑛 → 𝑝 ≠ ∅) |
23 | 22 | adantl 481 | . . 3 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛) → 𝑝 ≠ ∅) |
24 | 6 | eleq2i 2830 | . . . 4 ⊢ (𝑝 ∈ 𝐷 ↔ 𝑝 ∈ (ω ∖ {∅})) |
25 | eldifsn 4717 | . . . 4 ⊢ (𝑝 ∈ (ω ∖ {∅}) ↔ (𝑝 ∈ ω ∧ 𝑝 ≠ ∅)) | |
26 | 24, 25 | bitri 274 | . . 3 ⊢ (𝑝 ∈ 𝐷 ↔ (𝑝 ∈ ω ∧ 𝑝 ≠ ∅)) |
27 | 12, 23, 26 | sylanbrc 582 | . 2 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛) → 𝑝 ∈ 𝐷) |
28 | 4, 5, 27 | syl2anc 583 | 1 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝑝 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 ∪ cun 3881 ⊆ wss 3883 ∅c0 4253 {csn 4558 suc csuc 6253 Fn wfn 6413 ωcom 7687 ∧ w-bnj17 32565 FrSe w-bnj15 32571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-om 7688 df-bnj17 32566 |
This theorem is referenced by: bnj910 32828 |
Copyright terms: Public domain | W3C validator |