Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomuspgrlem2b Structured version   Visualization version   GIF version

Theorem isomuspgrlem2b 45281
Description: Lemma 2 for isomuspgrlem2 45285. (Contributed by AV, 29-Nov-2022.)
Hypotheses
Ref Expression
isomushgr.v 𝑉 = (Vtx‘𝐴)
isomushgr.w 𝑊 = (Vtx‘𝐵)
isomushgr.e 𝐸 = (Edg‘𝐴)
isomushgr.k 𝐾 = (Edg‘𝐵)
isomuspgrlem2.g 𝐺 = (𝑥𝐸 ↦ (𝐹𝑥))
isomuspgrlem2.a (𝜑𝐴 ∈ USPGraph)
isomuspgrlem2.f (𝜑𝐹:𝑉1-1-onto𝑊)
isomuspgrlem2.i (𝜑 → ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹𝑎), (𝐹𝑏)} ∈ 𝐾))
Assertion
Ref Expression
isomuspgrlem2b (𝜑𝐺:𝐸𝐾)
Distinct variable groups:   𝑎,𝑏,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝐸   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊   𝑥,𝐹   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏   𝐾,𝑎,𝑏   𝑉,𝑎,𝑏   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐺(𝑥,𝑎,𝑏)   𝑊(𝑎,𝑏)

Proof of Theorem isomuspgrlem2b
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isomuspgrlem2.a . . . . . 6 (𝜑𝐴 ∈ USPGraph)
2 uspgrupgr 27546 . . . . . 6 (𝐴 ∈ USPGraph → 𝐴 ∈ UPGraph)
31, 2syl 17 . . . . 5 (𝜑𝐴 ∈ UPGraph)
4 isomushgr.v . . . . . 6 𝑉 = (Vtx‘𝐴)
5 isomushgr.e . . . . . 6 𝐸 = (Edg‘𝐴)
64, 5upgredg 27507 . . . . 5 ((𝐴 ∈ UPGraph ∧ 𝑥𝐸) → ∃𝑐𝑉𝑑𝑉 𝑥 = {𝑐, 𝑑})
73, 6sylan 580 . . . 4 ((𝜑𝑥𝐸) → ∃𝑐𝑉𝑑𝑉 𝑥 = {𝑐, 𝑑})
8 isomuspgrlem2.i . . . . . . . . . . . . 13 (𝜑 → ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹𝑎), (𝐹𝑏)} ∈ 𝐾))
9 preq12 4671 . . . . . . . . . . . . . . . 16 ((𝑎 = 𝑐𝑏 = 𝑑) → {𝑎, 𝑏} = {𝑐, 𝑑})
109eleq1d 2823 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑐𝑏 = 𝑑) → ({𝑎, 𝑏} ∈ 𝐸 ↔ {𝑐, 𝑑} ∈ 𝐸))
11 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑐 → (𝐹𝑎) = (𝐹𝑐))
1211adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑎 = 𝑐𝑏 = 𝑑) → (𝐹𝑎) = (𝐹𝑐))
13 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑑 → (𝐹𝑏) = (𝐹𝑑))
1413adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑎 = 𝑐𝑏 = 𝑑) → (𝐹𝑏) = (𝐹𝑑))
1512, 14preq12d 4677 . . . . . . . . . . . . . . . 16 ((𝑎 = 𝑐𝑏 = 𝑑) → {(𝐹𝑎), (𝐹𝑏)} = {(𝐹𝑐), (𝐹𝑑)})
1615eleq1d 2823 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑐𝑏 = 𝑑) → ({(𝐹𝑎), (𝐹𝑏)} ∈ 𝐾 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾))
1710, 16bibi12d 346 . . . . . . . . . . . . . 14 ((𝑎 = 𝑐𝑏 = 𝑑) → (({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹𝑎), (𝐹𝑏)} ∈ 𝐾) ↔ ({𝑐, 𝑑} ∈ 𝐸 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾)))
1817rspc2gv 3569 . . . . . . . . . . . . 13 ((𝑐𝑉𝑑𝑉) → (∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹𝑎), (𝐹𝑏)} ∈ 𝐾) → ({𝑐, 𝑑} ∈ 𝐸 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾)))
198, 18syl5com 31 . . . . . . . . . . . 12 (𝜑 → ((𝑐𝑉𝑑𝑉) → ({𝑐, 𝑑} ∈ 𝐸 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾)))
2019adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 = {𝑐, 𝑑}) → ((𝑐𝑉𝑑𝑉) → ({𝑐, 𝑑} ∈ 𝐸 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾)))
2120imp 407 . . . . . . . . . 10 (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → ({𝑐, 𝑑} ∈ 𝐸 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾))
22 bicom 221 . . . . . . . . . . . . 13 (({𝑐, 𝑑} ∈ 𝐸 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾) ↔ ({(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾 ↔ {𝑐, 𝑑} ∈ 𝐸))
23 bianir 1056 . . . . . . . . . . . . . 14 (({𝑐, 𝑑} ∈ 𝐸 ∧ ({(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾 ↔ {𝑐, 𝑑} ∈ 𝐸)) → {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾)
2423ex 413 . . . . . . . . . . . . 13 ({𝑐, 𝑑} ∈ 𝐸 → (({(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾 ↔ {𝑐, 𝑑} ∈ 𝐸) → {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾))
2522, 24syl5bi 241 . . . . . . . . . . . 12 ({𝑐, 𝑑} ∈ 𝐸 → (({𝑐, 𝑑} ∈ 𝐸 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾) → {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾))
26 isomuspgrlem2.f . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹:𝑉1-1-onto𝑊)
27 f1ofn 6717 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝑉1-1-onto𝑊𝐹 Fn 𝑉)
2826, 27syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹 Fn 𝑉)
2928adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 = {𝑐, 𝑑}) → 𝐹 Fn 𝑉)
3029adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → 𝐹 Fn 𝑉)
31 simprl 768 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → 𝑐𝑉)
32 simprr 770 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → 𝑑𝑉)
3330, 31, 323jca 1127 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → (𝐹 Fn 𝑉𝑐𝑉𝑑𝑉))
3433adantl 482 . . . . . . . . . . . . . . . . . 18 (({𝑐, 𝑑} ∈ 𝐸 ∧ ((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉))) → (𝐹 Fn 𝑉𝑐𝑉𝑑𝑉))
35 fnimapr 6852 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝑉𝑐𝑉𝑑𝑉) → (𝐹 “ {𝑐, 𝑑}) = {(𝐹𝑐), (𝐹𝑑)})
3634, 35syl 17 . . . . . . . . . . . . . . . . 17 (({𝑐, 𝑑} ∈ 𝐸 ∧ ((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉))) → (𝐹 “ {𝑐, 𝑑}) = {(𝐹𝑐), (𝐹𝑑)})
3736eqcomd 2744 . . . . . . . . . . . . . . . 16 (({𝑐, 𝑑} ∈ 𝐸 ∧ ((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉))) → {(𝐹𝑐), (𝐹𝑑)} = (𝐹 “ {𝑐, 𝑑}))
3837eleq1d 2823 . . . . . . . . . . . . . . 15 (({𝑐, 𝑑} ∈ 𝐸 ∧ ((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉))) → ({(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾 ↔ (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾))
3938biimpd 228 . . . . . . . . . . . . . 14 (({𝑐, 𝑑} ∈ 𝐸 ∧ ((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉))) → ({(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾 → (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾))
4039ex 413 . . . . . . . . . . . . 13 ({𝑐, 𝑑} ∈ 𝐸 → (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → ({(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾 → (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾)))
4140com23 86 . . . . . . . . . . . 12 ({𝑐, 𝑑} ∈ 𝐸 → ({(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾 → (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾)))
4225, 41syld 47 . . . . . . . . . . 11 ({𝑐, 𝑑} ∈ 𝐸 → (({𝑐, 𝑑} ∈ 𝐸 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾) → (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾)))
4342com13 88 . . . . . . . . . 10 (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → (({𝑐, 𝑑} ∈ 𝐸 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾) → ({𝑐, 𝑑} ∈ 𝐸 → (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾)))
4421, 43mpd 15 . . . . . . . . 9 (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → ({𝑐, 𝑑} ∈ 𝐸 → (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾))
45 eleq1 2826 . . . . . . . . . . . 12 (𝑥 = {𝑐, 𝑑} → (𝑥𝐸 ↔ {𝑐, 𝑑} ∈ 𝐸))
46 imaeq2 5965 . . . . . . . . . . . . 13 (𝑥 = {𝑐, 𝑑} → (𝐹𝑥) = (𝐹 “ {𝑐, 𝑑}))
4746eleq1d 2823 . . . . . . . . . . . 12 (𝑥 = {𝑐, 𝑑} → ((𝐹𝑥) ∈ 𝐾 ↔ (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾))
4845, 47imbi12d 345 . . . . . . . . . . 11 (𝑥 = {𝑐, 𝑑} → ((𝑥𝐸 → (𝐹𝑥) ∈ 𝐾) ↔ ({𝑐, 𝑑} ∈ 𝐸 → (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾)))
4948adantl 482 . . . . . . . . . 10 ((𝜑𝑥 = {𝑐, 𝑑}) → ((𝑥𝐸 → (𝐹𝑥) ∈ 𝐾) ↔ ({𝑐, 𝑑} ∈ 𝐸 → (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾)))
5049adantr 481 . . . . . . . . 9 (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → ((𝑥𝐸 → (𝐹𝑥) ∈ 𝐾) ↔ ({𝑐, 𝑑} ∈ 𝐸 → (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾)))
5144, 50mpbird 256 . . . . . . . 8 (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → (𝑥𝐸 → (𝐹𝑥) ∈ 𝐾))
5251exp31 420 . . . . . . 7 (𝜑 → (𝑥 = {𝑐, 𝑑} → ((𝑐𝑉𝑑𝑉) → (𝑥𝐸 → (𝐹𝑥) ∈ 𝐾))))
5352com24 95 . . . . . 6 (𝜑 → (𝑥𝐸 → ((𝑐𝑉𝑑𝑉) → (𝑥 = {𝑐, 𝑑} → (𝐹𝑥) ∈ 𝐾))))
5453imp31 418 . . . . 5 (((𝜑𝑥𝐸) ∧ (𝑐𝑉𝑑𝑉)) → (𝑥 = {𝑐, 𝑑} → (𝐹𝑥) ∈ 𝐾))
5554rexlimdvva 3223 . . . 4 ((𝜑𝑥𝐸) → (∃𝑐𝑉𝑑𝑉 𝑥 = {𝑐, 𝑑} → (𝐹𝑥) ∈ 𝐾))
567, 55mpd 15 . . 3 ((𝜑𝑥𝐸) → (𝐹𝑥) ∈ 𝐾)
5756ralrimiva 3103 . 2 (𝜑 → ∀𝑥𝐸 (𝐹𝑥) ∈ 𝐾)
58 isomuspgrlem2.g . . 3 𝐺 = (𝑥𝐸 ↦ (𝐹𝑥))
5958fmpt 6984 . 2 (∀𝑥𝐸 (𝐹𝑥) ∈ 𝐾𝐺:𝐸𝐾)
6057, 59sylib 217 1 (𝜑𝐺:𝐸𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {cpr 4563  cmpt 5157  cima 5592   Fn wfn 6428  wf 6429  1-1-ontowf1o 6432  cfv 6433  Vtxcvtx 27366  Edgcedg 27417  UPGraphcupgr 27450  USPGraphcuspgr 27518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045  df-edg 27418  df-upgr 27452  df-uspgr 27520
This theorem is referenced by:  isomuspgrlem2c  45282  isomuspgrlem2d  45283
  Copyright terms: Public domain W3C validator