Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomuspgrlem2b Structured version   Visualization version   GIF version

Theorem isomuspgrlem2b 46011
Description: Lemma 2 for isomuspgrlem2 46015. (Contributed by AV, 29-Nov-2022.)
Hypotheses
Ref Expression
isomushgr.v 𝑉 = (Vtx‘𝐴)
isomushgr.w 𝑊 = (Vtx‘𝐵)
isomushgr.e 𝐸 = (Edg‘𝐴)
isomushgr.k 𝐾 = (Edg‘𝐵)
isomuspgrlem2.g 𝐺 = (𝑥𝐸 ↦ (𝐹𝑥))
isomuspgrlem2.a (𝜑𝐴 ∈ USPGraph)
isomuspgrlem2.f (𝜑𝐹:𝑉1-1-onto𝑊)
isomuspgrlem2.i (𝜑 → ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹𝑎), (𝐹𝑏)} ∈ 𝐾))
Assertion
Ref Expression
isomuspgrlem2b (𝜑𝐺:𝐸𝐾)
Distinct variable groups:   𝑎,𝑏,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝐸   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊   𝑥,𝐹   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏   𝐾,𝑎,𝑏   𝑉,𝑎,𝑏   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐺(𝑥,𝑎,𝑏)   𝑊(𝑎,𝑏)

Proof of Theorem isomuspgrlem2b
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isomuspgrlem2.a . . . . . 6 (𝜑𝐴 ∈ USPGraph)
2 uspgrupgr 28127 . . . . . 6 (𝐴 ∈ USPGraph → 𝐴 ∈ UPGraph)
31, 2syl 17 . . . . 5 (𝜑𝐴 ∈ UPGraph)
4 isomushgr.v . . . . . 6 𝑉 = (Vtx‘𝐴)
5 isomushgr.e . . . . . 6 𝐸 = (Edg‘𝐴)
64, 5upgredg 28088 . . . . 5 ((𝐴 ∈ UPGraph ∧ 𝑥𝐸) → ∃𝑐𝑉𝑑𝑉 𝑥 = {𝑐, 𝑑})
73, 6sylan 580 . . . 4 ((𝜑𝑥𝐸) → ∃𝑐𝑉𝑑𝑉 𝑥 = {𝑐, 𝑑})
8 isomuspgrlem2.i . . . . . . . . . . . . 13 (𝜑 → ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹𝑎), (𝐹𝑏)} ∈ 𝐾))
9 preq12 4696 . . . . . . . . . . . . . . . 16 ((𝑎 = 𝑐𝑏 = 𝑑) → {𝑎, 𝑏} = {𝑐, 𝑑})
109eleq1d 2822 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑐𝑏 = 𝑑) → ({𝑎, 𝑏} ∈ 𝐸 ↔ {𝑐, 𝑑} ∈ 𝐸))
11 fveq2 6842 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑐 → (𝐹𝑎) = (𝐹𝑐))
1211adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑎 = 𝑐𝑏 = 𝑑) → (𝐹𝑎) = (𝐹𝑐))
13 fveq2 6842 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑑 → (𝐹𝑏) = (𝐹𝑑))
1413adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑎 = 𝑐𝑏 = 𝑑) → (𝐹𝑏) = (𝐹𝑑))
1512, 14preq12d 4702 . . . . . . . . . . . . . . . 16 ((𝑎 = 𝑐𝑏 = 𝑑) → {(𝐹𝑎), (𝐹𝑏)} = {(𝐹𝑐), (𝐹𝑑)})
1615eleq1d 2822 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑐𝑏 = 𝑑) → ({(𝐹𝑎), (𝐹𝑏)} ∈ 𝐾 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾))
1710, 16bibi12d 345 . . . . . . . . . . . . . 14 ((𝑎 = 𝑐𝑏 = 𝑑) → (({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹𝑎), (𝐹𝑏)} ∈ 𝐾) ↔ ({𝑐, 𝑑} ∈ 𝐸 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾)))
1817rspc2gv 3589 . . . . . . . . . . . . 13 ((𝑐𝑉𝑑𝑉) → (∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹𝑎), (𝐹𝑏)} ∈ 𝐾) → ({𝑐, 𝑑} ∈ 𝐸 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾)))
198, 18syl5com 31 . . . . . . . . . . . 12 (𝜑 → ((𝑐𝑉𝑑𝑉) → ({𝑐, 𝑑} ∈ 𝐸 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾)))
2019adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 = {𝑐, 𝑑}) → ((𝑐𝑉𝑑𝑉) → ({𝑐, 𝑑} ∈ 𝐸 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾)))
2120imp 407 . . . . . . . . . 10 (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → ({𝑐, 𝑑} ∈ 𝐸 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾))
22 bicom 221 . . . . . . . . . . . . 13 (({𝑐, 𝑑} ∈ 𝐸 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾) ↔ ({(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾 ↔ {𝑐, 𝑑} ∈ 𝐸))
23 bianir 1057 . . . . . . . . . . . . . 14 (({𝑐, 𝑑} ∈ 𝐸 ∧ ({(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾 ↔ {𝑐, 𝑑} ∈ 𝐸)) → {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾)
2423ex 413 . . . . . . . . . . . . 13 ({𝑐, 𝑑} ∈ 𝐸 → (({(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾 ↔ {𝑐, 𝑑} ∈ 𝐸) → {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾))
2522, 24biimtrid 241 . . . . . . . . . . . 12 ({𝑐, 𝑑} ∈ 𝐸 → (({𝑐, 𝑑} ∈ 𝐸 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾) → {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾))
26 isomuspgrlem2.f . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹:𝑉1-1-onto𝑊)
27 f1ofn 6785 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝑉1-1-onto𝑊𝐹 Fn 𝑉)
2826, 27syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹 Fn 𝑉)
2928adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 = {𝑐, 𝑑}) → 𝐹 Fn 𝑉)
3029adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → 𝐹 Fn 𝑉)
31 simprl 769 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → 𝑐𝑉)
32 simprr 771 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → 𝑑𝑉)
3330, 31, 323jca 1128 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → (𝐹 Fn 𝑉𝑐𝑉𝑑𝑉))
3433adantl 482 . . . . . . . . . . . . . . . . . 18 (({𝑐, 𝑑} ∈ 𝐸 ∧ ((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉))) → (𝐹 Fn 𝑉𝑐𝑉𝑑𝑉))
35 fnimapr 6925 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝑉𝑐𝑉𝑑𝑉) → (𝐹 “ {𝑐, 𝑑}) = {(𝐹𝑐), (𝐹𝑑)})
3634, 35syl 17 . . . . . . . . . . . . . . . . 17 (({𝑐, 𝑑} ∈ 𝐸 ∧ ((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉))) → (𝐹 “ {𝑐, 𝑑}) = {(𝐹𝑐), (𝐹𝑑)})
3736eqcomd 2742 . . . . . . . . . . . . . . . 16 (({𝑐, 𝑑} ∈ 𝐸 ∧ ((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉))) → {(𝐹𝑐), (𝐹𝑑)} = (𝐹 “ {𝑐, 𝑑}))
3837eleq1d 2822 . . . . . . . . . . . . . . 15 (({𝑐, 𝑑} ∈ 𝐸 ∧ ((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉))) → ({(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾 ↔ (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾))
3938biimpd 228 . . . . . . . . . . . . . 14 (({𝑐, 𝑑} ∈ 𝐸 ∧ ((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉))) → ({(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾 → (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾))
4039ex 413 . . . . . . . . . . . . 13 ({𝑐, 𝑑} ∈ 𝐸 → (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → ({(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾 → (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾)))
4140com23 86 . . . . . . . . . . . 12 ({𝑐, 𝑑} ∈ 𝐸 → ({(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾 → (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾)))
4225, 41syld 47 . . . . . . . . . . 11 ({𝑐, 𝑑} ∈ 𝐸 → (({𝑐, 𝑑} ∈ 𝐸 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾) → (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾)))
4342com13 88 . . . . . . . . . 10 (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → (({𝑐, 𝑑} ∈ 𝐸 ↔ {(𝐹𝑐), (𝐹𝑑)} ∈ 𝐾) → ({𝑐, 𝑑} ∈ 𝐸 → (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾)))
4421, 43mpd 15 . . . . . . . . 9 (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → ({𝑐, 𝑑} ∈ 𝐸 → (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾))
45 eleq1 2825 . . . . . . . . . . . 12 (𝑥 = {𝑐, 𝑑} → (𝑥𝐸 ↔ {𝑐, 𝑑} ∈ 𝐸))
46 imaeq2 6009 . . . . . . . . . . . . 13 (𝑥 = {𝑐, 𝑑} → (𝐹𝑥) = (𝐹 “ {𝑐, 𝑑}))
4746eleq1d 2822 . . . . . . . . . . . 12 (𝑥 = {𝑐, 𝑑} → ((𝐹𝑥) ∈ 𝐾 ↔ (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾))
4845, 47imbi12d 344 . . . . . . . . . . 11 (𝑥 = {𝑐, 𝑑} → ((𝑥𝐸 → (𝐹𝑥) ∈ 𝐾) ↔ ({𝑐, 𝑑} ∈ 𝐸 → (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾)))
4948adantl 482 . . . . . . . . . 10 ((𝜑𝑥 = {𝑐, 𝑑}) → ((𝑥𝐸 → (𝐹𝑥) ∈ 𝐾) ↔ ({𝑐, 𝑑} ∈ 𝐸 → (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾)))
5049adantr 481 . . . . . . . . 9 (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → ((𝑥𝐸 → (𝐹𝑥) ∈ 𝐾) ↔ ({𝑐, 𝑑} ∈ 𝐸 → (𝐹 “ {𝑐, 𝑑}) ∈ 𝐾)))
5144, 50mpbird 256 . . . . . . . 8 (((𝜑𝑥 = {𝑐, 𝑑}) ∧ (𝑐𝑉𝑑𝑉)) → (𝑥𝐸 → (𝐹𝑥) ∈ 𝐾))
5251exp31 420 . . . . . . 7 (𝜑 → (𝑥 = {𝑐, 𝑑} → ((𝑐𝑉𝑑𝑉) → (𝑥𝐸 → (𝐹𝑥) ∈ 𝐾))))
5352com24 95 . . . . . 6 (𝜑 → (𝑥𝐸 → ((𝑐𝑉𝑑𝑉) → (𝑥 = {𝑐, 𝑑} → (𝐹𝑥) ∈ 𝐾))))
5453imp31 418 . . . . 5 (((𝜑𝑥𝐸) ∧ (𝑐𝑉𝑑𝑉)) → (𝑥 = {𝑐, 𝑑} → (𝐹𝑥) ∈ 𝐾))
5554rexlimdvva 3205 . . . 4 ((𝜑𝑥𝐸) → (∃𝑐𝑉𝑑𝑉 𝑥 = {𝑐, 𝑑} → (𝐹𝑥) ∈ 𝐾))
567, 55mpd 15 . . 3 ((𝜑𝑥𝐸) → (𝐹𝑥) ∈ 𝐾)
5756ralrimiva 3143 . 2 (𝜑 → ∀𝑥𝐸 (𝐹𝑥) ∈ 𝐾)
58 isomuspgrlem2.g . . 3 𝐺 = (𝑥𝐸 ↦ (𝐹𝑥))
5958fmpt 7058 . 2 (∀𝑥𝐸 (𝐹𝑥) ∈ 𝐾𝐺:𝐸𝐾)
6057, 59sylib 217 1 (𝜑𝐺:𝐸𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  {cpr 4588  cmpt 5188  cima 5636   Fn wfn 6491  wf 6492  1-1-ontowf1o 6495  cfv 6496  Vtxcvtx 27947  Edgcedg 27998  UPGraphcupgr 28031  USPGraphcuspgr 28099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-hash 14231  df-edg 27999  df-upgr 28033  df-uspgr 28101
This theorem is referenced by:  isomuspgrlem2c  46012  isomuspgrlem2d  46013
  Copyright terms: Public domain W3C validator