| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1001 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 35046. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1001.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| bnj1001.5 | ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
| bnj1001.6 | ⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
| bnj1001.13 | ⊢ 𝐷 = (ω ∖ {∅}) |
| bnj1001.27 | ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝜒″) |
| Ref | Expression |
|---|---|
| bnj1001 | ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1001.27 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝜒″) | |
| 2 | bnj1001.6 | . . . . 5 ⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) | |
| 3 | 2 | simplbi 497 | . . . 4 ⊢ (𝜂 → 𝑖 ∈ 𝑛) |
| 4 | 3 | bnj708 34792 | . . 3 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑖 ∈ 𝑛) |
| 5 | bnj1001.3 | . . . . . 6 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
| 6 | 5 | bnj1232 34839 | . . . . 5 ⊢ (𝜒 → 𝑛 ∈ 𝐷) |
| 7 | 6 | bnj706 34790 | . . . 4 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑛 ∈ 𝐷) |
| 8 | bnj1001.13 | . . . . 5 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 9 | 8 | bnj923 34804 | . . . 4 ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
| 10 | 7, 9 | syl 17 | . . 3 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑛 ∈ ω) |
| 11 | elnn 7877 | . . 3 ⊢ ((𝑖 ∈ 𝑛 ∧ 𝑛 ∈ ω) → 𝑖 ∈ ω) | |
| 12 | 4, 10, 11 | syl2anc 584 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑖 ∈ ω) |
| 13 | bnj1001.5 | . . . . . 6 ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) | |
| 14 | 13 | simp3bi 1147 | . . . . 5 ⊢ (𝜏 → 𝑝 = suc 𝑛) |
| 15 | 14 | bnj707 34791 | . . . 4 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑝 = suc 𝑛) |
| 16 | nnord 7874 | . . . . . . 7 ⊢ (𝑛 ∈ ω → Ord 𝑛) | |
| 17 | ordsucelsuc 7821 | . . . . . . 7 ⊢ (Ord 𝑛 → (𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ suc 𝑛)) | |
| 18 | 9, 16, 17 | 3syl 18 | . . . . . 6 ⊢ (𝑛 ∈ 𝐷 → (𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ suc 𝑛)) |
| 19 | 18 | biimpa 476 | . . . . 5 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) → suc 𝑖 ∈ suc 𝑛) |
| 20 | eleq2 2824 | . . . . 5 ⊢ (𝑝 = suc 𝑛 → (suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛)) | |
| 21 | 19, 20 | anim12i 613 | . . . 4 ⊢ (((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) ∧ 𝑝 = suc 𝑛) → (suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛))) |
| 22 | 7, 4, 15, 21 | syl21anc 837 | . . 3 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛))) |
| 23 | bianir 1058 | . . 3 ⊢ ((suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛)) → suc 𝑖 ∈ 𝑝) | |
| 24 | 22, 23 | syl 17 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → suc 𝑖 ∈ 𝑝) |
| 25 | 1, 12, 24 | 3jca 1128 | 1 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ∅c0 4313 {csn 4606 Ord word 6356 suc csuc 6359 Fn wfn 6531 ‘cfv 6536 ωcom 7866 ∧ w-bnj17 34722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-om 7867 df-bnj17 34723 |
| This theorem is referenced by: bnj1020 35001 |
| Copyright terms: Public domain | W3C validator |