Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1001 Structured version   Visualization version   GIF version

Theorem bnj1001 32939
Description: Technical lemma for bnj69 32990. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1001.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1001.5 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
bnj1001.6 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
bnj1001.13 𝐷 = (ω ∖ {∅})
bnj1001.27 ((𝜃𝜒𝜏𝜂) → 𝜒″)
Assertion
Ref Expression
bnj1001 ((𝜃𝜒𝜏𝜂) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝))

Proof of Theorem bnj1001
StepHypRef Expression
1 bnj1001.27 . 2 ((𝜃𝜒𝜏𝜂) → 𝜒″)
2 bnj1001.6 . . . . 5 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
32simplbi 498 . . . 4 (𝜂𝑖𝑛)
43bnj708 32736 . . 3 ((𝜃𝜒𝜏𝜂) → 𝑖𝑛)
5 bnj1001.3 . . . . . 6 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
65bnj1232 32783 . . . . 5 (𝜒𝑛𝐷)
76bnj706 32734 . . . 4 ((𝜃𝜒𝜏𝜂) → 𝑛𝐷)
8 bnj1001.13 . . . . 5 𝐷 = (ω ∖ {∅})
98bnj923 32748 . . . 4 (𝑛𝐷𝑛 ∈ ω)
107, 9syl 17 . . 3 ((𝜃𝜒𝜏𝜂) → 𝑛 ∈ ω)
11 elnn 7723 . . 3 ((𝑖𝑛𝑛 ∈ ω) → 𝑖 ∈ ω)
124, 10, 11syl2anc 584 . 2 ((𝜃𝜒𝜏𝜂) → 𝑖 ∈ ω)
13 bnj1001.5 . . . . . 6 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
1413simp3bi 1146 . . . . 5 (𝜏𝑝 = suc 𝑛)
1514bnj707 32735 . . . 4 ((𝜃𝜒𝜏𝜂) → 𝑝 = suc 𝑛)
16 nnord 7720 . . . . . . 7 (𝑛 ∈ ω → Ord 𝑛)
17 ordsucelsuc 7669 . . . . . . 7 (Ord 𝑛 → (𝑖𝑛 ↔ suc 𝑖 ∈ suc 𝑛))
189, 16, 173syl 18 . . . . . 6 (𝑛𝐷 → (𝑖𝑛 ↔ suc 𝑖 ∈ suc 𝑛))
1918biimpa 477 . . . . 5 ((𝑛𝐷𝑖𝑛) → suc 𝑖 ∈ suc 𝑛)
20 eleq2 2827 . . . . 5 (𝑝 = suc 𝑛 → (suc 𝑖𝑝 ↔ suc 𝑖 ∈ suc 𝑛))
2119, 20anim12i 613 . . . 4 (((𝑛𝐷𝑖𝑛) ∧ 𝑝 = suc 𝑛) → (suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖𝑝 ↔ suc 𝑖 ∈ suc 𝑛)))
227, 4, 15, 21syl21anc 835 . . 3 ((𝜃𝜒𝜏𝜂) → (suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖𝑝 ↔ suc 𝑖 ∈ suc 𝑛)))
23 bianir 1056 . . 3 ((suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖𝑝 ↔ suc 𝑖 ∈ suc 𝑛)) → suc 𝑖𝑝)
2422, 23syl 17 . 2 ((𝜃𝜒𝜏𝜂) → suc 𝑖𝑝)
251, 12, 243jca 1127 1 ((𝜃𝜒𝜏𝜂) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  cdif 3884  c0 4256  {csn 4561  Ord word 6265  suc csuc 6268   Fn wfn 6428  cfv 6433  ωcom 7712  w-bnj17 32665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-om 7713  df-bnj17 32666
This theorem is referenced by:  bnj1020  32945
  Copyright terms: Public domain W3C validator