Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1001 Structured version   Visualization version   GIF version

Theorem bnj1001 31365
Description: Technical lemma for bnj69 31415. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1001.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1001.5 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
bnj1001.6 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
bnj1001.13 𝐷 = (ω ∖ {∅})
bnj1001.27 ((𝜃𝜒𝜏𝜂) → 𝜒″)
Assertion
Ref Expression
bnj1001 ((𝜃𝜒𝜏𝜂) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝))

Proof of Theorem bnj1001
StepHypRef Expression
1 bnj1001.27 . 2 ((𝜃𝜒𝜏𝜂) → 𝜒″)
2 bnj1001.6 . . . . 5 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
32simplbi 485 . . . 4 (𝜂𝑖𝑛)
43bnj708 31163 . . 3 ((𝜃𝜒𝜏𝜂) → 𝑖𝑛)
5 bnj1001.3 . . . . . 6 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
65bnj1232 31211 . . . . 5 (𝜒𝑛𝐷)
76bnj706 31161 . . . 4 ((𝜃𝜒𝜏𝜂) → 𝑛𝐷)
8 bnj1001.13 . . . . 5 𝐷 = (ω ∖ {∅})
98bnj923 31175 . . . 4 (𝑛𝐷𝑛 ∈ ω)
107, 9syl 17 . . 3 ((𝜃𝜒𝜏𝜂) → 𝑛 ∈ ω)
11 elnn 7225 . . 3 ((𝑖𝑛𝑛 ∈ ω) → 𝑖 ∈ ω)
124, 10, 11syl2anc 573 . 2 ((𝜃𝜒𝜏𝜂) → 𝑖 ∈ ω)
13 bnj1001.5 . . . . . 6 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
1413simp3bi 1141 . . . . 5 (𝜏𝑝 = suc 𝑛)
1514bnj707 31162 . . . 4 ((𝜃𝜒𝜏𝜂) → 𝑝 = suc 𝑛)
16 nnord 7223 . . . . . . 7 (𝑛 ∈ ω → Ord 𝑛)
17 ordsucelsuc 7172 . . . . . . 7 (Ord 𝑛 → (𝑖𝑛 ↔ suc 𝑖 ∈ suc 𝑛))
189, 16, 173syl 18 . . . . . 6 (𝑛𝐷 → (𝑖𝑛 ↔ suc 𝑖 ∈ suc 𝑛))
1918biimpa 462 . . . . 5 ((𝑛𝐷𝑖𝑛) → suc 𝑖 ∈ suc 𝑛)
20 eleq2 2839 . . . . 5 (𝑝 = suc 𝑛 → (suc 𝑖𝑝 ↔ suc 𝑖 ∈ suc 𝑛))
2119, 20anim12i 600 . . . 4 (((𝑛𝐷𝑖𝑛) ∧ 𝑝 = suc 𝑛) → (suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖𝑝 ↔ suc 𝑖 ∈ suc 𝑛)))
227, 4, 15, 21syl21anc 1475 . . 3 ((𝜃𝜒𝜏𝜂) → (suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖𝑝 ↔ suc 𝑖 ∈ suc 𝑛)))
23 bianir 1045 . . 3 ((suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖𝑝 ↔ suc 𝑖 ∈ suc 𝑛)) → suc 𝑖𝑝)
2422, 23syl 17 . 2 ((𝜃𝜒𝜏𝜂) → suc 𝑖𝑝)
251, 12, 243jca 1122 1 ((𝜃𝜒𝜏𝜂) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  cdif 3720  c0 4063  {csn 4317  Ord word 5864  suc csuc 5867   Fn wfn 6025  cfv 6030  ωcom 7215  w-bnj17 31091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035  ax-un 7099
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-tr 4888  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-om 7216  df-bnj17 31092
This theorem is referenced by:  bnj1020  31370
  Copyright terms: Public domain W3C validator