![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1001 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 34986. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1001.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj1001.5 | ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
bnj1001.6 | ⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
bnj1001.13 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj1001.27 | ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝜒″) |
Ref | Expression |
---|---|
bnj1001 | ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1001.27 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝜒″) | |
2 | bnj1001.6 | . . . . 5 ⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) | |
3 | 2 | simplbi 497 | . . . 4 ⊢ (𝜂 → 𝑖 ∈ 𝑛) |
4 | 3 | bnj708 34732 | . . 3 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑖 ∈ 𝑛) |
5 | bnj1001.3 | . . . . . 6 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
6 | 5 | bnj1232 34779 | . . . . 5 ⊢ (𝜒 → 𝑛 ∈ 𝐷) |
7 | 6 | bnj706 34730 | . . . 4 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑛 ∈ 𝐷) |
8 | bnj1001.13 | . . . . 5 ⊢ 𝐷 = (ω ∖ {∅}) | |
9 | 8 | bnj923 34744 | . . . 4 ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
10 | 7, 9 | syl 17 | . . 3 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑛 ∈ ω) |
11 | elnn 7914 | . . 3 ⊢ ((𝑖 ∈ 𝑛 ∧ 𝑛 ∈ ω) → 𝑖 ∈ ω) | |
12 | 4, 10, 11 | syl2anc 583 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑖 ∈ ω) |
13 | bnj1001.5 | . . . . . 6 ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) | |
14 | 13 | simp3bi 1147 | . . . . 5 ⊢ (𝜏 → 𝑝 = suc 𝑛) |
15 | 14 | bnj707 34731 | . . . 4 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑝 = suc 𝑛) |
16 | nnord 7911 | . . . . . . 7 ⊢ (𝑛 ∈ ω → Ord 𝑛) | |
17 | ordsucelsuc 7858 | . . . . . . 7 ⊢ (Ord 𝑛 → (𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ suc 𝑛)) | |
18 | 9, 16, 17 | 3syl 18 | . . . . . 6 ⊢ (𝑛 ∈ 𝐷 → (𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ suc 𝑛)) |
19 | 18 | biimpa 476 | . . . . 5 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) → suc 𝑖 ∈ suc 𝑛) |
20 | eleq2 2833 | . . . . 5 ⊢ (𝑝 = suc 𝑛 → (suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛)) | |
21 | 19, 20 | anim12i 612 | . . . 4 ⊢ (((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) ∧ 𝑝 = suc 𝑛) → (suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛))) |
22 | 7, 4, 15, 21 | syl21anc 837 | . . 3 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛))) |
23 | bianir 1059 | . . 3 ⊢ ((suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛)) → suc 𝑖 ∈ 𝑝) | |
24 | 22, 23 | syl 17 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → suc 𝑖 ∈ 𝑝) |
25 | 1, 12, 24 | 3jca 1128 | 1 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ∅c0 4352 {csn 4648 Ord word 6394 suc csuc 6397 Fn wfn 6568 ‘cfv 6573 ωcom 7903 ∧ w-bnj17 34662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-om 7904 df-bnj17 34663 |
This theorem is referenced by: bnj1020 34941 |
Copyright terms: Public domain | W3C validator |