Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1001 Structured version   Visualization version   GIF version

Theorem bnj1001 32129
Description: Technical lemma for bnj69 32179. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1001.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1001.5 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
bnj1001.6 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
bnj1001.13 𝐷 = (ω ∖ {∅})
bnj1001.27 ((𝜃𝜒𝜏𝜂) → 𝜒″)
Assertion
Ref Expression
bnj1001 ((𝜃𝜒𝜏𝜂) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝))

Proof of Theorem bnj1001
StepHypRef Expression
1 bnj1001.27 . 2 ((𝜃𝜒𝜏𝜂) → 𝜒″)
2 bnj1001.6 . . . . 5 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
32simplbi 498 . . . 4 (𝜂𝑖𝑛)
43bnj708 31926 . . 3 ((𝜃𝜒𝜏𝜂) → 𝑖𝑛)
5 bnj1001.3 . . . . . 6 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
65bnj1232 31974 . . . . 5 (𝜒𝑛𝐷)
76bnj706 31924 . . . 4 ((𝜃𝜒𝜏𝜂) → 𝑛𝐷)
8 bnj1001.13 . . . . 5 𝐷 = (ω ∖ {∅})
98bnj923 31938 . . . 4 (𝑛𝐷𝑛 ∈ ω)
107, 9syl 17 . . 3 ((𝜃𝜒𝜏𝜂) → 𝑛 ∈ ω)
11 elnn 7579 . . 3 ((𝑖𝑛𝑛 ∈ ω) → 𝑖 ∈ ω)
124, 10, 11syl2anc 584 . 2 ((𝜃𝜒𝜏𝜂) → 𝑖 ∈ ω)
13 bnj1001.5 . . . . . 6 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
1413simp3bi 1139 . . . . 5 (𝜏𝑝 = suc 𝑛)
1514bnj707 31925 . . . 4 ((𝜃𝜒𝜏𝜂) → 𝑝 = suc 𝑛)
16 nnord 7577 . . . . . . 7 (𝑛 ∈ ω → Ord 𝑛)
17 ordsucelsuc 7526 . . . . . . 7 (Ord 𝑛 → (𝑖𝑛 ↔ suc 𝑖 ∈ suc 𝑛))
189, 16, 173syl 18 . . . . . 6 (𝑛𝐷 → (𝑖𝑛 ↔ suc 𝑖 ∈ suc 𝑛))
1918biimpa 477 . . . . 5 ((𝑛𝐷𝑖𝑛) → suc 𝑖 ∈ suc 𝑛)
20 eleq2 2898 . . . . 5 (𝑝 = suc 𝑛 → (suc 𝑖𝑝 ↔ suc 𝑖 ∈ suc 𝑛))
2119, 20anim12i 612 . . . 4 (((𝑛𝐷𝑖𝑛) ∧ 𝑝 = suc 𝑛) → (suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖𝑝 ↔ suc 𝑖 ∈ suc 𝑛)))
227, 4, 15, 21syl21anc 833 . . 3 ((𝜃𝜒𝜏𝜂) → (suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖𝑝 ↔ suc 𝑖 ∈ suc 𝑛)))
23 bianir 1050 . . 3 ((suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖𝑝 ↔ suc 𝑖 ∈ suc 𝑛)) → suc 𝑖𝑝)
2422, 23syl 17 . 2 ((𝜃𝜒𝜏𝜂) → suc 𝑖𝑝)
251, 12, 243jca 1120 1 ((𝜃𝜒𝜏𝜂) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  cdif 3930  c0 4288  {csn 4557  Ord word 6183  suc csuc 6186   Fn wfn 6343  cfv 6348  ωcom 7569  w-bnj17 31855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-tr 5164  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-om 7570  df-bnj17 31856
This theorem is referenced by:  bnj1020  32134
  Copyright terms: Public domain W3C validator