Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1001 Structured version   Visualization version   GIF version

Theorem bnj1001 34973
Description: Technical lemma for bnj69 35024. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1001.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1001.5 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
bnj1001.6 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
bnj1001.13 𝐷 = (ω ∖ {∅})
bnj1001.27 ((𝜃𝜒𝜏𝜂) → 𝜒″)
Assertion
Ref Expression
bnj1001 ((𝜃𝜒𝜏𝜂) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝))

Proof of Theorem bnj1001
StepHypRef Expression
1 bnj1001.27 . 2 ((𝜃𝜒𝜏𝜂) → 𝜒″)
2 bnj1001.6 . . . . 5 (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))
32simplbi 497 . . . 4 (𝜂𝑖𝑛)
43bnj708 34770 . . 3 ((𝜃𝜒𝜏𝜂) → 𝑖𝑛)
5 bnj1001.3 . . . . . 6 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
65bnj1232 34817 . . . . 5 (𝜒𝑛𝐷)
76bnj706 34768 . . . 4 ((𝜃𝜒𝜏𝜂) → 𝑛𝐷)
8 bnj1001.13 . . . . 5 𝐷 = (ω ∖ {∅})
98bnj923 34782 . . . 4 (𝑛𝐷𝑛 ∈ ω)
107, 9syl 17 . . 3 ((𝜃𝜒𝜏𝜂) → 𝑛 ∈ ω)
11 elnn 7898 . . 3 ((𝑖𝑛𝑛 ∈ ω) → 𝑖 ∈ ω)
124, 10, 11syl2anc 584 . 2 ((𝜃𝜒𝜏𝜂) → 𝑖 ∈ ω)
13 bnj1001.5 . . . . . 6 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
1413simp3bi 1148 . . . . 5 (𝜏𝑝 = suc 𝑛)
1514bnj707 34769 . . . 4 ((𝜃𝜒𝜏𝜂) → 𝑝 = suc 𝑛)
16 nnord 7895 . . . . . . 7 (𝑛 ∈ ω → Ord 𝑛)
17 ordsucelsuc 7842 . . . . . . 7 (Ord 𝑛 → (𝑖𝑛 ↔ suc 𝑖 ∈ suc 𝑛))
189, 16, 173syl 18 . . . . . 6 (𝑛𝐷 → (𝑖𝑛 ↔ suc 𝑖 ∈ suc 𝑛))
1918biimpa 476 . . . . 5 ((𝑛𝐷𝑖𝑛) → suc 𝑖 ∈ suc 𝑛)
20 eleq2 2830 . . . . 5 (𝑝 = suc 𝑛 → (suc 𝑖𝑝 ↔ suc 𝑖 ∈ suc 𝑛))
2119, 20anim12i 613 . . . 4 (((𝑛𝐷𝑖𝑛) ∧ 𝑝 = suc 𝑛) → (suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖𝑝 ↔ suc 𝑖 ∈ suc 𝑛)))
227, 4, 15, 21syl21anc 838 . . 3 ((𝜃𝜒𝜏𝜂) → (suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖𝑝 ↔ suc 𝑖 ∈ suc 𝑛)))
23 bianir 1059 . . 3 ((suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖𝑝 ↔ suc 𝑖 ∈ suc 𝑛)) → suc 𝑖𝑝)
2422, 23syl 17 . 2 ((𝜃𝜒𝜏𝜂) → suc 𝑖𝑝)
251, 12, 243jca 1129 1 ((𝜃𝜒𝜏𝜂) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  cdif 3948  c0 4333  {csn 4626  Ord word 6383  suc csuc 6386   Fn wfn 6556  cfv 6561  ωcom 7887  w-bnj17 34700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-om 7888  df-bnj17 34701
This theorem is referenced by:  bnj1020  34979
  Copyright terms: Public domain W3C validator