Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1001 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 32890. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1001.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj1001.5 | ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
bnj1001.6 | ⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
bnj1001.13 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj1001.27 | ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝜒″) |
Ref | Expression |
---|---|
bnj1001 | ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1001.27 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝜒″) | |
2 | bnj1001.6 | . . . . 5 ⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) | |
3 | 2 | simplbi 497 | . . . 4 ⊢ (𝜂 → 𝑖 ∈ 𝑛) |
4 | 3 | bnj708 32636 | . . 3 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑖 ∈ 𝑛) |
5 | bnj1001.3 | . . . . . 6 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
6 | 5 | bnj1232 32683 | . . . . 5 ⊢ (𝜒 → 𝑛 ∈ 𝐷) |
7 | 6 | bnj706 32634 | . . . 4 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑛 ∈ 𝐷) |
8 | bnj1001.13 | . . . . 5 ⊢ 𝐷 = (ω ∖ {∅}) | |
9 | 8 | bnj923 32648 | . . . 4 ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
10 | 7, 9 | syl 17 | . . 3 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑛 ∈ ω) |
11 | elnn 7698 | . . 3 ⊢ ((𝑖 ∈ 𝑛 ∧ 𝑛 ∈ ω) → 𝑖 ∈ ω) | |
12 | 4, 10, 11 | syl2anc 583 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑖 ∈ ω) |
13 | bnj1001.5 | . . . . . 6 ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) | |
14 | 13 | simp3bi 1145 | . . . . 5 ⊢ (𝜏 → 𝑝 = suc 𝑛) |
15 | 14 | bnj707 32635 | . . . 4 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑝 = suc 𝑛) |
16 | nnord 7695 | . . . . . . 7 ⊢ (𝑛 ∈ ω → Ord 𝑛) | |
17 | ordsucelsuc 7644 | . . . . . . 7 ⊢ (Ord 𝑛 → (𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ suc 𝑛)) | |
18 | 9, 16, 17 | 3syl 18 | . . . . . 6 ⊢ (𝑛 ∈ 𝐷 → (𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ suc 𝑛)) |
19 | 18 | biimpa 476 | . . . . 5 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) → suc 𝑖 ∈ suc 𝑛) |
20 | eleq2 2827 | . . . . 5 ⊢ (𝑝 = suc 𝑛 → (suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛)) | |
21 | 19, 20 | anim12i 612 | . . . 4 ⊢ (((𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛) ∧ 𝑝 = suc 𝑛) → (suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛))) |
22 | 7, 4, 15, 21 | syl21anc 834 | . . 3 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛))) |
23 | bianir 1055 | . . 3 ⊢ ((suc 𝑖 ∈ suc 𝑛 ∧ (suc 𝑖 ∈ 𝑝 ↔ suc 𝑖 ∈ suc 𝑛)) → suc 𝑖 ∈ 𝑝) | |
24 | 22, 23 | syl 17 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → suc 𝑖 ∈ 𝑝) |
25 | 1, 12, 24 | 3jca 1126 | 1 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∅c0 4253 {csn 4558 Ord word 6250 suc csuc 6253 Fn wfn 6413 ‘cfv 6418 ωcom 7687 ∧ w-bnj17 32565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-om 7688 df-bnj17 32566 |
This theorem is referenced by: bnj1020 32845 |
Copyright terms: Public domain | W3C validator |